544 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			544 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "test_precomp.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| const string FEATURES2D_DIR = "features2d";
 | |
| const string IMAGE_FILENAME = "tsukuba.png";
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                       Algorithmic tests for descriptor matchers                        *
 | |
| \****************************************************************************************/
 | |
| class CV_DescriptorMatcherTest : public cvtest::BaseTest
 | |
| {
 | |
| public:
 | |
|     CV_DescriptorMatcherTest( const string& _name, const Ptr<DescriptorMatcher>& _dmatcher, float _badPart ) :
 | |
|         badPart(_badPart), name(_name), dmatcher(_dmatcher)
 | |
|         {}
 | |
| protected:
 | |
|     static const int dim = 500;
 | |
|     static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
 | |
|     static const int countFactor = 4; // do not change it
 | |
|     const float badPart;
 | |
| 
 | |
|     virtual void run( int );
 | |
|     void generateData( Mat& query, Mat& train );
 | |
| 
 | |
|     void emptyDataTest();
 | |
|     void matchTest( const Mat& query, const Mat& train );
 | |
|     void knnMatchTest( const Mat& query, const Mat& train );
 | |
|     void radiusMatchTest( const Mat& query, const Mat& train );
 | |
| 
 | |
|     string name;
 | |
|     Ptr<DescriptorMatcher> dmatcher;
 | |
| 
 | |
| private:
 | |
|     CV_DescriptorMatcherTest& operator=(const CV_DescriptorMatcherTest&) { return *this; }
 | |
| };
 | |
| 
 | |
| void CV_DescriptorMatcherTest::emptyDataTest()
 | |
| {
 | |
|     assert( !dmatcher.empty() );
 | |
|     Mat queryDescriptors, trainDescriptors, mask;
 | |
|     vector<Mat> trainDescriptorCollection, masks;
 | |
|     vector<DMatch> matches;
 | |
|     vector<vector<DMatch> > vmatches;
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->match( queryDescriptors, trainDescriptors, matches, mask );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->knnMatch( queryDescriptors, trainDescriptors, vmatches, 2, mask );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->radiusMatch( queryDescriptors, trainDescriptors, vmatches, 10.f, mask );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (1).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->add( trainDescriptorCollection );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "add() on empty descriptors must not generate exception.\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->match( queryDescriptors, matches, masks );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "match() on empty descriptors must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->knnMatch( queryDescriptors, vmatches, 2, masks );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "knnMatch() on empty descriptors must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
|     try
 | |
|     {
 | |
|         dmatcher->radiusMatch( queryDescriptors, vmatches, 10.f, masks );
 | |
|     }
 | |
|     catch(...)
 | |
|     {
 | |
|         ts->printf( cvtest::TS::LOG, "radiusMatch() on empty descriptors must not generate exception (2).\n" );
 | |
|         ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::generateData( Mat& query, Mat& train )
 | |
| {
 | |
|     RNG& rng = theRNG();
 | |
| 
 | |
|     // Generate query descriptors randomly.
 | |
|     // Descriptor vector elements are integer values.
 | |
|     Mat buf( queryDescCount, dim, CV_32SC1 );
 | |
|     rng.fill( buf, RNG::UNIFORM, Scalar::all(0), Scalar(3) );
 | |
|     buf.convertTo( query, CV_32FC1 );
 | |
| 
 | |
|     // Generate train decriptors as follows:
 | |
|     // copy each query descriptor to train set countFactor times
 | |
|     // and perturb some one element of the copied descriptors in
 | |
|     // in ascending order. General boundaries of the perturbation
 | |
|     // are (0.f, 1.f).
 | |
|     train.create( query.rows*countFactor, query.cols, CV_32FC1 );
 | |
|     float step = 1.f / countFactor;
 | |
|     for( int qIdx = 0; qIdx < query.rows; qIdx++ )
 | |
|     {
 | |
|         Mat queryDescriptor = query.row(qIdx);
 | |
|         for( int c = 0; c < countFactor; c++ )
 | |
|         {
 | |
|             int tIdx = qIdx * countFactor + c;
 | |
|             Mat trainDescriptor = train.row(tIdx);
 | |
|             queryDescriptor.copyTo( trainDescriptor );
 | |
|             int elem = rng(dim);
 | |
|             float diff = rng.uniform( step*c, step*(c+1) );
 | |
|             trainDescriptor.at<float>(0, elem) += diff;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::matchTest( const Mat& query, const Mat& train )
 | |
| {
 | |
|     dmatcher->clear();
 | |
| 
 | |
|     // test const version of match()
 | |
|     {
 | |
|         vector<DMatch> matches;
 | |
|         dmatcher->match( query, train, matches );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 DMatch& match = matches[i];
 | |
|                 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
 | |
|                     badCount++;
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (1).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test const version of match() for the same query and test descriptors
 | |
|     {
 | |
|         vector<DMatch> matches;
 | |
|         dmatcher->match( query, query, matches );
 | |
| 
 | |
|         if( (int)matches.size() != query.rows )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function for the same query and test descriptors (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 DMatch& match = matches[i];
 | |
|                 //std::cout << match.distance << std::endl;
 | |
| 
 | |
|                 if( match.queryIdx != (int)i || match.trainIdx != (int)i || std::abs(match.distance) > FLT_EPSILON )
 | |
|                 {
 | |
|                     ts->printf( cvtest::TS::LOG, "Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1).\n",
 | |
|                                 i, match.queryIdx, match.trainIdx, match.distance );
 | |
|                     ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test version of match() with add()
 | |
|     {
 | |
|         vector<DMatch> matches;
 | |
|         // make add() twice to test such case
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
 | |
|         // prepare masks (make first nearest match illegal)
 | |
|         vector<Mat> masks(2);
 | |
|         for(int mi = 0; mi < 2; mi++ )
 | |
|         {
 | |
|             masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
 | |
|             for( int di = 0; di < queryDescCount/2; di++ )
 | |
|                 masks[mi].col(di*countFactor).setTo(Scalar::all(0));
 | |
|         }
 | |
| 
 | |
|         dmatcher->match( query, matches, masks );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test match() function (2).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 DMatch& match = matches[i];
 | |
|                 int shift = dmatcher->isMaskSupported() ? 1 : 0;
 | |
|                 {
 | |
|                     if( i < queryDescCount/2 )
 | |
|                     {
 | |
|                         if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + shift) || (match.imgIdx != 0) )
 | |
|                             badCount++;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + shift) || (match.imgIdx != 1) )
 | |
|                             badCount++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test match() function (2).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::knnMatchTest( const Mat& query, const Mat& train )
 | |
| {
 | |
|     dmatcher->clear();
 | |
| 
 | |
|     // test const version of knnMatch()
 | |
|     {
 | |
|         const int knn = 3;
 | |
| 
 | |
|         vector<vector<DMatch> > matches;
 | |
|         dmatcher->knnMatch( query, train, matches, knn );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 if( (int)matches[i].size() != knn )
 | |
|                     badCount++;
 | |
|                 else
 | |
|                 {
 | |
|                     int localBadCount = 0;
 | |
|                     for( int k = 0; k < knn; k++ )
 | |
|                     {
 | |
|                         DMatch& match = matches[i][k];
 | |
|                         if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor+k) || (match.imgIdx != 0) )
 | |
|                             localBadCount++;
 | |
|                     }
 | |
|                     badCount += localBadCount > 0 ? 1 : 0;
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test version of knnMatch() with add()
 | |
|     {
 | |
|         const int knn = 2;
 | |
|         vector<vector<DMatch> > matches;
 | |
|         // make add() twice to test such case
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
 | |
|         // prepare masks (make first nearest match illegal)
 | |
|         vector<Mat> masks(2);
 | |
|         for(int mi = 0; mi < 2; mi++ )
 | |
|         {
 | |
|             masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
 | |
|             for( int di = 0; di < queryDescCount/2; di++ )
 | |
|                 masks[mi].col(di*countFactor).setTo(Scalar::all(0));
 | |
|         }
 | |
| 
 | |
|         dmatcher->knnMatch( query, matches, knn, masks );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test knnMatch() function (2).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             int shift = dmatcher->isMaskSupported() ? 1 : 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 if( (int)matches[i].size() != knn )
 | |
|                     badCount++;
 | |
|                 else
 | |
|                 {
 | |
|                     int localBadCount = 0;
 | |
|                     for( int k = 0; k < knn; k++ )
 | |
|                     {
 | |
|                         DMatch& match = matches[i][k];
 | |
|                         {
 | |
|                             if( i < queryDescCount/2 )
 | |
|                             {
 | |
|                                 if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
 | |
|                                     (match.imgIdx != 0) )
 | |
|                                     localBadCount++;
 | |
|                             }
 | |
|                             else
 | |
|                             {
 | |
|                                 if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
 | |
|                                     (match.imgIdx != 1) )
 | |
|                                     localBadCount++;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     badCount += localBadCount > 0 ? 1 : 0;
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& train )
 | |
| {
 | |
|     dmatcher->clear();
 | |
|     // test const version of match()
 | |
|     {
 | |
|         const float radius = 1.f/countFactor;
 | |
|         vector<vector<DMatch> > matches;
 | |
|         dmatcher->radiusMatch( query, train, matches, radius );
 | |
| 
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int badCount = 0;
 | |
|             for( size_t i = 0; i < matches.size(); i++ )
 | |
|             {
 | |
|                 if( (int)matches[i].size() != 1 )
 | |
|                     badCount++;
 | |
|                 else
 | |
|                 {
 | |
|                     DMatch& match = matches[i][0];
 | |
|                     if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
 | |
|                         badCount++;
 | |
|                 }
 | |
|             }
 | |
|             if( (float)badCount > (float)queryDescCount*badPart )
 | |
|             {
 | |
|                 ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
 | |
|                             (float)badCount/(float)queryDescCount );
 | |
|                 ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // test version of match() with add()
 | |
|     {
 | |
|         int n = 3;
 | |
|         const float radius = 1.f/countFactor * n;
 | |
|         vector<vector<DMatch> > matches;
 | |
|         // make add() twice to test such case
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(0, train.rows/2)) );
 | |
|         dmatcher->add( vector<Mat>(1,train.rowRange(train.rows/2, train.rows)) );
 | |
|         // prepare masks (make first nearest match illegal)
 | |
|         vector<Mat> masks(2);
 | |
|         for(int mi = 0; mi < 2; mi++ )
 | |
|         {
 | |
|             masks[mi] = Mat(query.rows, train.rows/2, CV_8UC1, Scalar::all(1));
 | |
|             for( int di = 0; di < queryDescCount/2; di++ )
 | |
|                 masks[mi].col(di*countFactor).setTo(Scalar::all(0));
 | |
|         }
 | |
| 
 | |
|         dmatcher->radiusMatch( query, matches, radius, masks );
 | |
| 
 | |
|         //int curRes = cvtest::TS::OK;
 | |
|         if( (int)matches.size() != queryDescCount )
 | |
|         {
 | |
|             ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
 | |
|         }
 | |
| 
 | |
|         int badCount = 0;
 | |
|         int shift = dmatcher->isMaskSupported() ? 1 : 0;
 | |
|         int needMatchCount = dmatcher->isMaskSupported() ? n-1 : n;
 | |
|         for( size_t i = 0; i < matches.size(); i++ )
 | |
|         {
 | |
|             if( (int)matches[i].size() != needMatchCount )
 | |
|                 badCount++;
 | |
|             else
 | |
|             {
 | |
|                 int localBadCount = 0;
 | |
|                 for( int k = 0; k < needMatchCount; k++ )
 | |
|                 {
 | |
|                     DMatch& match = matches[i][k];
 | |
|                     {
 | |
|                         if( i < queryDescCount/2 )
 | |
|                         {
 | |
|                             if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor + k + shift) ||
 | |
|                                 (match.imgIdx != 0) )
 | |
|                                 localBadCount++;
 | |
|                         }
 | |
|                         else
 | |
|                         {
 | |
|                             if( (match.queryIdx != (int)i) || (match.trainIdx != ((int)i-queryDescCount/2)*countFactor + k + shift) ||
 | |
|                                 (match.imgIdx != 1) )
 | |
|                                 localBadCount++;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|                 badCount += localBadCount > 0 ? 1 : 0;
 | |
|             }
 | |
|         }
 | |
|         if( (float)badCount > (float)queryDescCount*badPart )
 | |
|         {
 | |
|             //curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
 | |
|             ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
 | |
|                         (float)badCount/(float)queryDescCount );
 | |
|             ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void CV_DescriptorMatcherTest::run( int )
 | |
| {
 | |
|     Mat query, train;
 | |
|     generateData( query, train );
 | |
| 
 | |
|     matchTest( query, train );
 | |
| 
 | |
|     knnMatchTest( query, train );
 | |
| 
 | |
|     radiusMatchTest( query, train );
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                                Tests registrations                                     *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| TEST( Features2d_DescriptorMatcher_BruteForce, regression )
 | |
| {
 | |
|     CV_DescriptorMatcherTest test( "descriptor-matcher-brute-force", Algorithm::create<DescriptorMatcher>("DescriptorMatcher.BFMatcher"), 0.01f );
 | |
|     test.safe_run();
 | |
| }
 | |
| 
 | |
| TEST( Features2d_DescriptorMatcher_FlannBased, regression )
 | |
| {
 | |
|     CV_DescriptorMatcherTest test( "descriptor-matcher-flann-based", Algorithm::create<DescriptorMatcher>("DescriptorMatcher.FlannBasedMatcher"), 0.04f );
 | |
|     test.safe_run();
 | |
| }
 | 
