get_hogdescriptor_visu is passed img->clone(), which is not usable as a non-const reference (and it doesn't modify the argument, anyway).
		
			
				
	
	
		
			462 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			462 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include <opencv2/opencv.hpp>
 | 
						||
 | 
						||
#include <string>
 | 
						||
#include <iostream>
 | 
						||
#include <fstream>
 | 
						||
#include <vector>
 | 
						||
 | 
						||
#include <time.h>
 | 
						||
 | 
						||
using namespace cv;
 | 
						||
using namespace std;
 | 
						||
 | 
						||
void get_svm_detector(const SVM& svm, vector< float > & hog_detector );
 | 
						||
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData );
 | 
						||
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst );
 | 
						||
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
 | 
						||
Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorValues, const Size & size );
 | 
						||
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size );
 | 
						||
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels );
 | 
						||
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color );
 | 
						||
void test_it( const Size & size );
 | 
						||
 | 
						||
void get_svm_detector(const SVM& svm, vector< float > & hog_detector )
 | 
						||
{
 | 
						||
    // get the number of variables
 | 
						||
    const int var_all = svm.get_var_count();
 | 
						||
    // get the number of support vectors
 | 
						||
    const int sv_total = svm.get_support_vector_count();
 | 
						||
    // get the decision function
 | 
						||
    const CvSVMDecisionFunc* decision_func = svm.get_decision_function();
 | 
						||
    // get the support vectors
 | 
						||
    const float** sv = new const float*[ sv_total ];
 | 
						||
    for( int i = 0 ; i < sv_total ; ++i )
 | 
						||
        sv[ i ] = svm.get_support_vector(i);
 | 
						||
 | 
						||
    CV_Assert( var_all > 0 &&
 | 
						||
        sv_total > 0 &&
 | 
						||
        decision_func != 0 &&
 | 
						||
        decision_func->alpha != 0 &&
 | 
						||
        decision_func->sv_count == sv_total );
 | 
						||
 | 
						||
    float svi = 0.f;
 | 
						||
 | 
						||
    hog_detector.clear(); //clear stuff in vector.
 | 
						||
    hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
 | 
						||
 | 
						||
     /**
 | 
						||
    * hog_detector^i = \sum_j support_vector_j^i * \alpha_j
 | 
						||
    * hog_detector^dim = -\rho
 | 
						||
    */
 | 
						||
   for( int i = 0 ; i < var_all ; ++i )
 | 
						||
    {
 | 
						||
        svi = 0.f;
 | 
						||
        for( int j = 0 ; j < sv_total ; ++j )
 | 
						||
        {
 | 
						||
            if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
 | 
						||
                svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
 | 
						||
            else
 | 
						||
                svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
 | 
						||
        }
 | 
						||
        hog_detector.push_back( svi );
 | 
						||
    }
 | 
						||
    hog_detector.push_back( (float)-decision_func->rho );
 | 
						||
 | 
						||
    delete[] sv;
 | 
						||
}
 | 
						||
 | 
						||
 | 
						||
/*
 | 
						||
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
 | 
						||
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
 | 
						||
* Transposition of samples are made if needed.
 | 
						||
*/
 | 
						||
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
 | 
						||
{
 | 
						||
    //--Convert data
 | 
						||
    const int rows = (int)train_samples.size();
 | 
						||
    const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
 | 
						||
    cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
 | 
						||
    trainData = cv::Mat(rows, cols, CV_32FC1 );
 | 
						||
    vector< Mat >::const_iterator itr = train_samples.begin();
 | 
						||
    vector< Mat >::const_iterator end = train_samples.end();
 | 
						||
    for( int i = 0 ; itr != end ; ++itr, ++i )
 | 
						||
    {
 | 
						||
        CV_Assert( itr->cols == 1 ||
 | 
						||
            itr->rows == 1 );
 | 
						||
        if( itr->cols == 1 )
 | 
						||
        {
 | 
						||
            transpose( *(itr), tmp );
 | 
						||
            tmp.copyTo( trainData.row( i ) );
 | 
						||
        }
 | 
						||
        else if( itr->rows == 1 )
 | 
						||
        {
 | 
						||
            itr->copyTo( trainData.row( i ) );
 | 
						||
        }
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst )
 | 
						||
{
 | 
						||
    string line;
 | 
						||
    ifstream file;
 | 
						||
 | 
						||
    file.open( (prefix+filename).c_str() );
 | 
						||
    if( !file.is_open() )
 | 
						||
    {
 | 
						||
        cerr << "Unable to open the list of images from " << filename << " filename." << endl;
 | 
						||
        exit( -1 );
 | 
						||
    }
 | 
						||
 | 
						||
    bool end_of_parsing = false;
 | 
						||
    while( !end_of_parsing )
 | 
						||
    {
 | 
						||
        getline( file, line );
 | 
						||
        if( line == "" ) // no more file to read
 | 
						||
        {
 | 
						||
            end_of_parsing = true;
 | 
						||
            break;
 | 
						||
        }
 | 
						||
        Mat img = imread( (prefix+line).c_str() ); // load the image
 | 
						||
        if( !img.data ) // invalid image, just skip it.
 | 
						||
            continue;
 | 
						||
#ifdef _DEBUG
 | 
						||
        imshow( "image", img );
 | 
						||
        waitKey( 10 );
 | 
						||
#endif
 | 
						||
        img_lst.push_back( img.clone() );
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
 | 
						||
{
 | 
						||
    Rect box;
 | 
						||
    box.width = size.width;
 | 
						||
    box.height = size.height;
 | 
						||
 | 
						||
    const int size_x = box.width;
 | 
						||
    const int size_y = box.height;
 | 
						||
 | 
						||
    srand( (unsigned int)time( NULL ) );
 | 
						||
 | 
						||
    vector< Mat >::const_iterator img = full_neg_lst.begin();
 | 
						||
    vector< Mat >::const_iterator end = full_neg_lst.end();
 | 
						||
    for( ; img != end ; ++img )
 | 
						||
    {
 | 
						||
        box.x = rand() % (img->cols - size_x);
 | 
						||
        box.y = rand() % (img->rows - size_y);
 | 
						||
        Mat roi = (*img)(box);
 | 
						||
        neg_lst.push_back( roi.clone() );
 | 
						||
#ifdef _DEBUG
 | 
						||
        imshow( "img", roi.clone() );
 | 
						||
        waitKey( 10 );
 | 
						||
#endif
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization
 | 
						||
Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorValues, const Size & size )
 | 
						||
{
 | 
						||
    const int DIMX = size.width;
 | 
						||
    const int DIMY = size.height;
 | 
						||
    float zoomFac = 3;
 | 
						||
    Mat visu;
 | 
						||
    resize(color_origImg, visu, Size( (int)(color_origImg.cols*zoomFac), (int)(color_origImg.rows*zoomFac) ) );
 | 
						||
 | 
						||
    int cellSize        = 8;
 | 
						||
    int gradientBinSize = 9;
 | 
						||
    float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180<38> into 9 bins, how large (in rad) is one bin?
 | 
						||
 | 
						||
    // prepare data structure: 9 orientation / gradient strenghts for each cell
 | 
						||
    int cells_in_x_dir = DIMX / cellSize;
 | 
						||
    int cells_in_y_dir = DIMY / cellSize;
 | 
						||
    float*** gradientStrengths = new float**[cells_in_y_dir];
 | 
						||
    int** cellUpdateCounter   = new int*[cells_in_y_dir];
 | 
						||
    for (int y=0; y<cells_in_y_dir; y++)
 | 
						||
    {
 | 
						||
        gradientStrengths[y] = new float*[cells_in_x_dir];
 | 
						||
        cellUpdateCounter[y] = new int[cells_in_x_dir];
 | 
						||
        for (int x=0; x<cells_in_x_dir; x++)
 | 
						||
        {
 | 
						||
            gradientStrengths[y][x] = new float[gradientBinSize];
 | 
						||
            cellUpdateCounter[y][x] = 0;
 | 
						||
 | 
						||
            for (int bin=0; bin<gradientBinSize; bin++)
 | 
						||
                gradientStrengths[y][x][bin] = 0.0;
 | 
						||
        }
 | 
						||
    }
 | 
						||
 | 
						||
    // nr of blocks = nr of cells - 1
 | 
						||
    // since there is a new block on each cell (overlapping blocks!) but the last one
 | 
						||
    int blocks_in_x_dir = cells_in_x_dir - 1;
 | 
						||
    int blocks_in_y_dir = cells_in_y_dir - 1;
 | 
						||
 | 
						||
    // compute gradient strengths per cell
 | 
						||
    int descriptorDataIdx = 0;
 | 
						||
    int cellx = 0;
 | 
						||
    int celly = 0;
 | 
						||
 | 
						||
    for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
 | 
						||
    {
 | 
						||
        for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
 | 
						||
        {
 | 
						||
            // 4 cells per block ...
 | 
						||
            for (int cellNr=0; cellNr<4; cellNr++)
 | 
						||
            {
 | 
						||
                // compute corresponding cell nr
 | 
						||
                cellx = blockx;
 | 
						||
                celly = blocky;
 | 
						||
                if (cellNr==1) celly++;
 | 
						||
                if (cellNr==2) cellx++;
 | 
						||
                if (cellNr==3)
 | 
						||
                {
 | 
						||
                    cellx++;
 | 
						||
                    celly++;
 | 
						||
                }
 | 
						||
 | 
						||
                for (int bin=0; bin<gradientBinSize; bin++)
 | 
						||
                {
 | 
						||
                    float gradientStrength = descriptorValues[ descriptorDataIdx ];
 | 
						||
                    descriptorDataIdx++;
 | 
						||
 | 
						||
                    gradientStrengths[celly][cellx][bin] += gradientStrength;
 | 
						||
 | 
						||
                } // for (all bins)
 | 
						||
 | 
						||
 | 
						||
                // note: overlapping blocks lead to multiple updates of this sum!
 | 
						||
                // we therefore keep track how often a cell was updated,
 | 
						||
                // to compute average gradient strengths
 | 
						||
                cellUpdateCounter[celly][cellx]++;
 | 
						||
 | 
						||
            } // for (all cells)
 | 
						||
 | 
						||
 | 
						||
        } // for (all block x pos)
 | 
						||
    } // for (all block y pos)
 | 
						||
 | 
						||
 | 
						||
    // compute average gradient strengths
 | 
						||
    for (celly=0; celly<cells_in_y_dir; celly++)
 | 
						||
    {
 | 
						||
        for (cellx=0; cellx<cells_in_x_dir; cellx++)
 | 
						||
        {
 | 
						||
 | 
						||
            float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
 | 
						||
 | 
						||
            // compute average gradient strenghts for each gradient bin direction
 | 
						||
            for (int bin=0; bin<gradientBinSize; bin++)
 | 
						||
            {
 | 
						||
                gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell;
 | 
						||
            }
 | 
						||
        }
 | 
						||
    }
 | 
						||
 | 
						||
    // draw cells
 | 
						||
    for (celly=0; celly<cells_in_y_dir; celly++)
 | 
						||
    {
 | 
						||
        for (cellx=0; cellx<cells_in_x_dir; cellx++)
 | 
						||
        {
 | 
						||
            int drawX = cellx * cellSize;
 | 
						||
            int drawY = celly * cellSize;
 | 
						||
 | 
						||
            int mx = drawX + cellSize/2;
 | 
						||
            int my = drawY + cellSize/2;
 | 
						||
 | 
						||
            rectangle(visu, Point((int)(drawX*zoomFac), (int)(drawY*zoomFac)), Point((int)((drawX+cellSize)*zoomFac), (int)((drawY+cellSize)*zoomFac)), CV_RGB(100,100,100), 1);
 | 
						||
 | 
						||
            // draw in each cell all 9 gradient strengths
 | 
						||
            for (int bin=0; bin<gradientBinSize; bin++)
 | 
						||
            {
 | 
						||
                float currentGradStrength = gradientStrengths[celly][cellx][bin];
 | 
						||
 | 
						||
                // no line to draw?
 | 
						||
                if (currentGradStrength==0)
 | 
						||
                    continue;
 | 
						||
 | 
						||
                float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
 | 
						||
 | 
						||
                float dirVecX = cos( currRad );
 | 
						||
                float dirVecY = sin( currRad );
 | 
						||
                float maxVecLen = (float)(cellSize/2.f);
 | 
						||
                float scale = 2.5; // just a visualization scale, to see the lines better
 | 
						||
 | 
						||
                // compute line coordinates
 | 
						||
                float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
 | 
						||
                float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
 | 
						||
                float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
 | 
						||
                float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
 | 
						||
 | 
						||
                // draw gradient visualization
 | 
						||
                line(visu, Point((int)(x1*zoomFac),(int)(y1*zoomFac)), Point((int)(x2*zoomFac),(int)(y2*zoomFac)), CV_RGB(0,255,0), 1);
 | 
						||
 | 
						||
            } // for (all bins)
 | 
						||
 | 
						||
        } // for (cellx)
 | 
						||
    } // for (celly)
 | 
						||
 | 
						||
 | 
						||
    // don't forget to free memory allocated by helper data structures!
 | 
						||
    for (int y=0; y<cells_in_y_dir; y++)
 | 
						||
    {
 | 
						||
        for (int x=0; x<cells_in_x_dir; x++)
 | 
						||
        {
 | 
						||
            delete[] gradientStrengths[y][x];
 | 
						||
        }
 | 
						||
        delete[] gradientStrengths[y];
 | 
						||
        delete[] cellUpdateCounter[y];
 | 
						||
    }
 | 
						||
    delete[] gradientStrengths;
 | 
						||
    delete[] cellUpdateCounter;
 | 
						||
 | 
						||
    return visu;
 | 
						||
 | 
						||
} // get_hogdescriptor_visu
 | 
						||
 | 
						||
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
 | 
						||
{
 | 
						||
    HOGDescriptor hog;
 | 
						||
    hog.winSize = size;
 | 
						||
    Mat gray;
 | 
						||
    vector< Point > location;
 | 
						||
    vector< float > descriptors;
 | 
						||
 | 
						||
    vector< Mat >::const_iterator img = img_lst.begin();
 | 
						||
    vector< Mat >::const_iterator end = img_lst.end();
 | 
						||
    for( ; img != end ; ++img )
 | 
						||
    {
 | 
						||
        cvtColor( *img, gray, COLOR_BGR2GRAY );
 | 
						||
        hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location );
 | 
						||
        gradient_lst.push_back( Mat( descriptors ).clone() );
 | 
						||
#ifdef _DEBUG
 | 
						||
        imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) );
 | 
						||
        waitKey( 10 );
 | 
						||
#endif
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
 | 
						||
{
 | 
						||
    SVM svm;
 | 
						||
 | 
						||
    /* Default values to train SVM */
 | 
						||
    SVMParams params;
 | 
						||
    params.coef0 = 0.0;
 | 
						||
    params.degree = 3;
 | 
						||
    params.term_crit.epsilon = 1e-3;
 | 
						||
    params.gamma = 0;
 | 
						||
    params.kernel_type = SVM::LINEAR;
 | 
						||
    params.nu = 0.5;
 | 
						||
    params.p = 0.1; // for EPSILON_SVR, epsilon in loss function?
 | 
						||
    params.C = 0.01; // From paper, soft classifier
 | 
						||
    params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
 | 
						||
 | 
						||
    Mat train_data;
 | 
						||
    convert_to_ml( gradient_lst, train_data );
 | 
						||
 | 
						||
    clog << "Start training...";
 | 
						||
    svm.train( train_data, Mat( labels ), Mat(), Mat(), params );
 | 
						||
    clog << "...[done]" << endl;
 | 
						||
 | 
						||
    svm.save( "my_people_detector.yml" );
 | 
						||
}
 | 
						||
 | 
						||
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color )
 | 
						||
{
 | 
						||
    if( !locations.empty() )
 | 
						||
    {
 | 
						||
        vector< Rect >::const_iterator loc = locations.begin();
 | 
						||
        vector< Rect >::const_iterator end = locations.end();
 | 
						||
        for( ; loc != end ; ++loc )
 | 
						||
        {
 | 
						||
            rectangle( img, *loc, color, 2 );
 | 
						||
        }
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
void test_it( const Size & size )
 | 
						||
{
 | 
						||
    char key = 27;
 | 
						||
    Scalar reference( 0, 255, 0 );
 | 
						||
    Scalar trained( 0, 0, 255 );
 | 
						||
    Mat img, draw;
 | 
						||
    SVM svm;
 | 
						||
    HOGDescriptor hog;
 | 
						||
    HOGDescriptor my_hog;
 | 
						||
    my_hog.winSize = size;
 | 
						||
    VideoCapture video;
 | 
						||
    vector< Rect > locations;
 | 
						||
 | 
						||
    // Load the trained SVM.
 | 
						||
    svm.load( "my_people_detector.yml" );
 | 
						||
    // Set the trained svm to my_hog
 | 
						||
    vector< float > hog_detector;
 | 
						||
    get_svm_detector( svm, hog_detector );
 | 
						||
    my_hog.setSVMDetector( hog_detector );
 | 
						||
    // Set the people detector.
 | 
						||
    hog.setSVMDetector( hog.getDefaultPeopleDetector() );
 | 
						||
    // Open the camera.
 | 
						||
    video.open(0);
 | 
						||
    if( !video.isOpened() )
 | 
						||
    {
 | 
						||
        cerr << "Unable to open the device 0" << endl;
 | 
						||
        exit( -1 );
 | 
						||
    }
 | 
						||
 | 
						||
    bool end_of_process = false;
 | 
						||
    while( !end_of_process )
 | 
						||
    {
 | 
						||
        video >> img;
 | 
						||
        if( !img.data )
 | 
						||
            break;
 | 
						||
 | 
						||
        draw = img.clone();
 | 
						||
 | 
						||
        locations.clear();
 | 
						||
        hog.detectMultiScale( img, locations );
 | 
						||
        draw_locations( draw, locations, reference );
 | 
						||
 | 
						||
        locations.clear();
 | 
						||
        my_hog.detectMultiScale( img, locations );
 | 
						||
        draw_locations( draw, locations, trained );
 | 
						||
 | 
						||
        imshow( "Video", draw );
 | 
						||
        key = (char)waitKey( 10 );
 | 
						||
        if( 27 == key )
 | 
						||
            end_of_process = true;
 | 
						||
    }
 | 
						||
}
 | 
						||
 | 
						||
int main( int argc, char** argv )
 | 
						||
{
 | 
						||
    if( argc != 4 )
 | 
						||
    {
 | 
						||
        cout << "Wrong number of parameters." << endl
 | 
						||
            << "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl
 | 
						||
            << "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl;
 | 
						||
        exit( -1 );
 | 
						||
    }
 | 
						||
    vector< Mat > pos_lst;
 | 
						||
    vector< Mat > full_neg_lst;
 | 
						||
    vector< Mat > neg_lst;
 | 
						||
    vector< Mat > gradient_lst;
 | 
						||
    vector< int > labels;
 | 
						||
 | 
						||
    load_images( argv[1], argv[2], pos_lst );
 | 
						||
    labels.assign( pos_lst.size(), +1 );
 | 
						||
    const unsigned int old = (unsigned int)labels.size();
 | 
						||
    load_images( argv[3], argv[4], full_neg_lst );
 | 
						||
    sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) );
 | 
						||
    labels.insert( labels.end(), neg_lst.size(), -1 );
 | 
						||
    CV_Assert( old < labels.size() );
 | 
						||
 | 
						||
    compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) );
 | 
						||
    compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) );
 | 
						||
 | 
						||
    train_svm( gradient_lst, labels );
 | 
						||
 | 
						||
    test_it( Size( 96, 160 ) ); // change with your parameters
 | 
						||
 | 
						||
    return 0;
 | 
						||
}
 |