opencv/modules/features2d/doc/common_interfaces_of_descriptor_matchers.rst
Roman Donchenko f77c68e0fa Merge remote-tracking branch 'origin/2.4' into merge-2.4
Conflicts:
	modules/imgproc/src/opencl/integral_sqrsum.cl
	modules/nonfree/doc/feature_detection.rst
	modules/nonfree/include/opencv2/nonfree/ocl.hpp
	modules/nonfree/src/surf_ocl.cpp
	modules/nonfree/test/test_features2d.cpp
	modules/ocl/doc/image_processing.rst
	modules/ocl/include/opencv2/ocl/ocl.hpp
	modules/ocl/perf/perf_imgproc.cpp
	modules/ocl/perf/perf_match_template.cpp
	modules/ocl/src/haar.cpp
	modules/ocl/src/imgproc.cpp
	modules/ocl/src/match_template.cpp
	modules/ocl/src/opencl/haarobjectdetect.cl
	modules/ocl/src/opencl/haarobjectdetect_scaled2.cl
	modules/ocl/test/test_imgproc.cpp
2014-03-31 14:42:00 +04:00

280 lines
14 KiB
ReStructuredText

Common Interfaces of Descriptor Matchers
========================================
.. highlight:: cpp
Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to easily switch
between different algorithms solving the same problem. This section is devoted to matching descriptors
that are represented as vectors in a multidimensional space. All objects that implement ``vector``
descriptor matchers inherit the
:ocv:class:`DescriptorMatcher` interface.
.. note::
* An example explaining keypoint matching can be found at opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
* An example on descriptor matching evaluation can be found at opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
* An example on one to many image matching can be found at opencv_source_code/samples/cpp/matching_to_many_images.cpp
DescriptorMatcher
-----------------
.. ocv:class:: DescriptorMatcher : public Algorithm
Abstract base class for matching keypoint descriptors. It has two groups
of match methods: for matching descriptors of an image with another image or
with an image set. ::
class DescriptorMatcher
{
public:
virtual ~DescriptorMatcher();
virtual void add( InputArrayOfArrays descriptors );
const vector<Mat>& getTrainDescriptors() const;
virtual void clear();
bool empty() const;
virtual bool isMaskSupported() const = 0;
virtual void train();
/*
* Group of methods to match descriptors from an image pair.
*/
void match( InputArray queryDescriptors, InputArray trainDescriptors,
vector<DMatch>& matches, InputArray mask=noArray() ) const;
void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
vector<vector<DMatch> >& matches, int k,
InputArray mask=noArray(), bool compactResult=false ) const;
void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
vector<vector<DMatch> >& matches, float maxDistance,
InputArray mask=noArray(), bool compactResult=false ) const;
/*
* Group of methods to match descriptors from one image to an image set.
*/
void match( InputArray queryDescriptors, vector<DMatch>& matches,
InputArrayOfArrays masks=noArray() );
void knnMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches,
int k, InputArrayOfArrays masks=noArray(),
bool compactResult=false );
void radiusMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches,
float maxDistance, InputArrayOfArrays masks=noArray(),
bool compactResult=false );
virtual void read( const FileNode& );
virtual void write( FileStorage& ) const;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
protected:
vector<Mat> trainDescCollection;
vector<UMat> utrainDescCollection;
...
};
DescriptorMatcher::add
--------------------------
Adds descriptors to train a CPU(``trainDescCollectionis``) or GPU(``utrainDescCollectionis``) descriptor collection. If the collection is not empty, the new descriptors are added to existing train descriptors.
.. ocv:function:: void DescriptorMatcher::add( InputArrayOfArrays descriptors )
:param descriptors: Descriptors to add. Each ``descriptors[i]`` is a set of descriptors from the same train image.
DescriptorMatcher::getTrainDescriptors
------------------------------------------
Returns a constant link to the train descriptor collection ``trainDescCollection`` .
.. ocv:function:: const vector<Mat>& DescriptorMatcher::getTrainDescriptors() const
DescriptorMatcher::clear
----------------------------
Clears the train descriptor collections.
.. ocv:function:: void DescriptorMatcher::clear()
DescriptorMatcher::empty
----------------------------
Returns true if there are no train descriptors in the both collections.
.. ocv:function:: bool DescriptorMatcher::empty() const
DescriptorMatcher::isMaskSupported
--------------------------------------
Returns true if the descriptor matcher supports masking permissible matches.
.. ocv:function:: bool DescriptorMatcher::isMaskSupported()
DescriptorMatcher::train
----------------------------
Trains a descriptor matcher
.. ocv:function:: void DescriptorMatcher::train()
Trains a descriptor matcher (for example, the flann index). In all methods to match, the method ``train()`` is run every time before matching. Some descriptor matchers (for example, ``BruteForceMatcher``) have an empty implementation of this method. Other matchers really train their inner structures (for example, ``FlannBasedMatcher`` trains ``flann::Index`` ).
DescriptorMatcher::match
----------------------------
Finds the best match for each descriptor from a query set.
.. ocv:function:: void DescriptorMatcher::match( InputArray queryDescriptors, InputArray trainDescriptors, vector<DMatch>& matches, InputArray mask=noArray() ) const
.. ocv:function:: void DescriptorMatcher::match(InputArray queryDescriptors, vector<DMatch>& matches, InputArrayOfArrays masks=noArray() )
:param queryDescriptors: Query set of descriptors.
:param trainDescriptors: Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
:param matches: Matches. If a query descriptor is masked out in ``mask`` , no match is added for this descriptor. So, ``matches`` size may be smaller than the query descriptors count.
:param mask: Mask specifying permissible matches between an input query and train matrices of descriptors.
:param masks: Set of masks. Each ``masks[i]`` specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image ``trainDescCollection[i]``.
In the first variant of this method, the train descriptors are passed as an input argument. In the second variant of the method, train descriptors collection that was set by ``DescriptorMatcher::add`` is used. Optional mask (or masks) can be passed to specify which query and training descriptors can be matched. Namely, ``queryDescriptors[i]`` can be matched with ``trainDescriptors[j]`` only if ``mask.at<uchar>(i,j)`` is non-zero.
DescriptorMatcher::knnMatch
-------------------------------
Finds the k best matches for each descriptor from a query set.
.. ocv:function:: void DescriptorMatcher::knnMatch(InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch> >& matches, int k, InputArray mask=noArray(), bool compactResult=false ) const
.. ocv:function:: void DescriptorMatcher::knnMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches, int k, InputArrayOfArrays masks=noArray(), bool compactResult=false )
:param queryDescriptors: Query set of descriptors.
:param trainDescriptors: Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
:param mask: Mask specifying permissible matches between an input query and train matrices of descriptors.
:param masks: Set of masks. Each ``masks[i]`` specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image ``trainDescCollection[i]``.
:param matches: Matches. Each ``matches[i]`` is k or less matches for the same query descriptor.
:param k: Count of best matches found per each query descriptor or less if a query descriptor has less than k possible matches in total.
:param compactResult: Parameter used when the mask (or masks) is not empty. If ``compactResult`` is false, the ``matches`` vector has the same size as ``queryDescriptors`` rows. If ``compactResult`` is true, the ``matches`` vector does not contain matches for fully masked-out query descriptors.
These extended variants of :ocv:func:`DescriptorMatcher::match` methods find several best matches for each query descriptor. The matches are returned in the distance increasing order. See :ocv:func:`DescriptorMatcher::match` for the details about query and train descriptors.
DescriptorMatcher::radiusMatch
----------------------------------
For each query descriptor, finds the training descriptors not farther than the specified distance.
.. ocv:function:: void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, vector<vector<DMatch> >& matches, float maxDistance, InputArray mask=noArray(), bool compactResult=false ) const
.. ocv:function:: void DescriptorMatcher::radiusMatch( InputArray queryDescriptors, vector<vector<DMatch> >& matches, float maxDistance, InputArrayOfArrays masks=noArray(), bool compactResult=false )
:param queryDescriptors: Query set of descriptors.
:param trainDescriptors: Train set of descriptors. This set is not added to the train descriptors collection stored in the class object.
:param mask: Mask specifying permissible matches between an input query and train matrices of descriptors.
:param masks: Set of masks. Each ``masks[i]`` specifies permissible matches between the input query descriptors and stored train descriptors from the i-th image ``trainDescCollection[i]``.
:param matches: Found matches.
:param compactResult: Parameter used when the mask (or masks) is not empty. If ``compactResult`` is false, the ``matches`` vector has the same size as ``queryDescriptors`` rows. If ``compactResult`` is true, the ``matches`` vector does not contain matches for fully masked-out query descriptors.
:param maxDistance: Threshold for the distance between matched descriptors. Distance means here metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured in Pixels)!
For each query descriptor, the methods find such training descriptors that the distance between the query descriptor and the training descriptor is equal or smaller than ``maxDistance``. Found matches are returned in the distance increasing order.
DescriptorMatcher::clone
----------------------------
Clones the matcher.
.. ocv:function:: Ptr<DescriptorMatcher> DescriptorMatcher::clone( bool emptyTrainData=false )
:param emptyTrainData: If ``emptyTrainData`` is false, the method creates a deep copy of the object, that is, copies both parameters and train data. If ``emptyTrainData`` is true, the method creates an object copy with the current parameters but with empty train data.
DescriptorMatcher::create
-----------------------------
Creates a descriptor matcher of a given type with the default parameters (using default constructor).
.. ocv:function:: Ptr<DescriptorMatcher> DescriptorMatcher::create( const String& descriptorMatcherType )
:param descriptorMatcherType: Descriptor matcher type. Now the following matcher types are supported:
*
``BruteForce`` (it uses ``L2`` )
*
``BruteForce-L1``
*
``BruteForce-Hamming``
*
``BruteForce-Hamming(2)``
*
``FlannBased``
BFMatcher
-----------------
.. ocv:class:: BFMatcher : public DescriptorMatcher
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest descriptor in the second set by trying each one. This descriptor matcher supports masking permissible matches of descriptor sets.
BFMatcher::BFMatcher
--------------------
Brute-force matcher constructor.
.. ocv:function:: BFMatcher::BFMatcher( int normType=NORM_L2, bool crossCheck=false )
:param normType: One of ``NORM_L1``, ``NORM_L2``, ``NORM_HAMMING``, ``NORM_HAMMING2``. ``L1`` and ``L2`` norms are preferable choices for SIFT and SURF descriptors, ``NORM_HAMMING`` should be used with ORB, BRISK and BRIEF, ``NORM_HAMMING2`` should be used with ORB when ``WTA_K==3`` or ``4`` (see ORB::ORB constructor description).
:param crossCheck: If it is false, this is will be default BFMatcher behaviour when it finds the k nearest neighbors for each query descriptor. If ``crossCheck==true``, then the ``knnMatch()`` method with ``k=1`` will only return pairs ``(i,j)`` such that for ``i-th`` query descriptor the ``j-th`` descriptor in the matcher's collection is the nearest and vice versa, i.e. the ``BFMatcher`` will only return consistent pairs. Such technique usually produces best results with minimal number of outliers when there are enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
FlannBasedMatcher
-----------------
.. ocv:class:: FlannBasedMatcher : public DescriptorMatcher
Flann-based descriptor matcher. This matcher trains :ocv:class:`flann::Index_` on a train descriptor collection and calls its nearest search methods to find the best matches. So, this matcher may be faster when matching a large train collection than the brute force matcher. ``FlannBasedMatcher`` does not support masking permissible matches of descriptor sets because ``flann::Index`` does not support this. ::
class FlannBasedMatcher : public DescriptorMatcher
{
public:
FlannBasedMatcher(
const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
virtual void add( InputArrayOfArrays descriptors );
virtual void clear();
virtual void train();
virtual bool isMaskSupported() const;
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
protected:
...
};
..