238 lines
8.8 KiB
C++
238 lines
8.8 KiB
C++
//*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "precomp.hpp"
|
|
#include "opencv2/contrib/hybridtracker.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
CvHybridTrackerParams::CvHybridTrackerParams(float _ft_tracker_weight, float _ms_tracker_weight,
|
|
CvFeatureTrackerParams _ft_params,
|
|
CvMeanShiftTrackerParams _ms_params,
|
|
CvMotionModel)
|
|
{
|
|
ft_tracker_weight = _ft_tracker_weight;
|
|
ms_tracker_weight = _ms_tracker_weight;
|
|
ft_params = _ft_params;
|
|
ms_params = _ms_params;
|
|
}
|
|
|
|
CvMeanShiftTrackerParams::CvMeanShiftTrackerParams(int _tracking_type, CvTermCriteria _term_crit)
|
|
{
|
|
tracking_type = _tracking_type;
|
|
term_crit = _term_crit;
|
|
}
|
|
|
|
CvHybridTracker::CvHybridTracker() {
|
|
|
|
}
|
|
|
|
CvHybridTracker::CvHybridTracker(HybridTrackerParams _params) :
|
|
params(_params) {
|
|
params.ft_params.feature_type = CvFeatureTrackerParams::SIFT;
|
|
mstracker = new CvMeanShiftTracker(params.ms_params);
|
|
fttracker = new CvFeatureTracker(params.ft_params);
|
|
}
|
|
|
|
CvHybridTracker::~CvHybridTracker() {
|
|
if (mstracker != NULL)
|
|
delete mstracker;
|
|
if (fttracker != NULL)
|
|
delete fttracker;
|
|
}
|
|
|
|
inline float CvHybridTracker::getL2Norm(Point2f p1, Point2f p2) {
|
|
float distance = (p1.x - p2.x) * (p1.x - p2.x) + (p1.y - p2.y) * (p1.y
|
|
- p2.y);
|
|
return sqrt(distance);
|
|
}
|
|
|
|
Mat CvHybridTracker::getDistanceProjection(Mat image, Point2f center) {
|
|
Mat hist(image.size(), CV_64F);
|
|
|
|
double lu = getL2Norm(Point(0, 0), center);
|
|
double ru = getL2Norm(Point(0, image.size().width), center);
|
|
double rd = getL2Norm(Point(image.size().height, image.size().width),
|
|
center);
|
|
double ld = getL2Norm(Point(image.size().height, 0), center);
|
|
|
|
double max = (lu < ru) ? lu : ru;
|
|
max = (max < rd) ? max : rd;
|
|
max = (max < ld) ? max : ld;
|
|
|
|
for (int i = 0; i < hist.rows; i++)
|
|
for (int j = 0; j < hist.cols; j++)
|
|
hist.at<double> (i, j) = 1.0 - (getL2Norm(Point(i, j), center)
|
|
/ max);
|
|
|
|
return hist;
|
|
}
|
|
|
|
Mat CvHybridTracker::getGaussianProjection(Mat image, int ksize, double sigma,
|
|
Point2f center) {
|
|
Mat kernel = getGaussianKernel(ksize, sigma, CV_64F);
|
|
double max = kernel.at<double> (ksize / 2);
|
|
|
|
Mat hist(image.size(), CV_64F);
|
|
for (int i = 0; i < hist.rows; i++)
|
|
for (int j = 0; j < hist.cols; j++) {
|
|
int pos = cvRound(getL2Norm(Point(i, j), center));
|
|
if (pos < ksize / 2.0)
|
|
hist.at<double> (i, j) = 1.0 - (kernel.at<double> (pos) / max);
|
|
}
|
|
|
|
return hist;
|
|
}
|
|
|
|
void CvHybridTracker::newTracker(Mat image, Rect selection) {
|
|
prev_proj = Mat::zeros(image.size(), CV_64FC1);
|
|
prev_center = Point2f(selection.x + selection.width / 2.0f, selection.y
|
|
+ selection.height / 2.0f);
|
|
prev_window = selection;
|
|
|
|
mstracker->newTrackingWindow(image, selection);
|
|
fttracker->newTrackingWindow(image, selection);
|
|
|
|
samples = cvCreateMat(2, 1, CV_32FC1);
|
|
labels = cvCreateMat(2, 1, CV_32SC1);
|
|
|
|
ittr = 0;
|
|
}
|
|
|
|
void CvHybridTracker::updateTracker(Mat image) {
|
|
ittr++;
|
|
|
|
//copy over clean images: TODO
|
|
mstracker->updateTrackingWindow(image);
|
|
fttracker->updateTrackingWindowWithFlow(image);
|
|
|
|
if (params.motion_model == CvMotionModel::EM)
|
|
updateTrackerWithEM(image);
|
|
else
|
|
updateTrackerWithLowPassFilter(image);
|
|
|
|
// Regression to find new weights
|
|
Point2f ms_center = mstracker->getTrackingEllipse().center;
|
|
Point2f ft_center = fttracker->getTrackingCenter();
|
|
|
|
#ifdef DEBUG_HYTRACKER
|
|
circle(image, ms_center, 3, Scalar(0, 0, 255), -1, 8);
|
|
circle(image, ft_center, 3, Scalar(255, 0, 0), -1, 8);
|
|
putText(image, "ms", Point(ms_center.x+2, ms_center.y), FONT_HERSHEY_PLAIN, 0.75, Scalar(255, 255, 255));
|
|
putText(image, "ft", Point(ft_center.x+2, ft_center.y), FONT_HERSHEY_PLAIN, 0.75, Scalar(255, 255, 255));
|
|
#endif
|
|
|
|
double ms_len = getL2Norm(ms_center, curr_center);
|
|
double ft_len = getL2Norm(ft_center, curr_center);
|
|
double total_len = ms_len + ft_len;
|
|
|
|
params.ms_tracker_weight *= (ittr - 1);
|
|
params.ms_tracker_weight += (float)((ms_len / total_len));
|
|
params.ms_tracker_weight /= ittr;
|
|
params.ft_tracker_weight *= (ittr - 1);
|
|
params.ft_tracker_weight += (float)((ft_len / total_len));
|
|
params.ft_tracker_weight /= ittr;
|
|
|
|
circle(image, prev_center, 3, Scalar(0, 0, 0), -1, 8);
|
|
circle(image, curr_center, 3, Scalar(255, 255, 255), -1, 8);
|
|
|
|
prev_center = curr_center;
|
|
prev_window.x = (int)(curr_center.x-prev_window.width/2.0);
|
|
prev_window.y = (int)(curr_center.y-prev_window.height/2.0);
|
|
|
|
mstracker->setTrackingWindow(prev_window);
|
|
fttracker->setTrackingWindow(prev_window);
|
|
}
|
|
|
|
void CvHybridTracker::updateTrackerWithEM(Mat image) {
|
|
Mat ms_backproj = mstracker->getHistogramProjection(CV_64F);
|
|
Mat ms_distproj = getDistanceProjection(image, mstracker->getTrackingCenter());
|
|
Mat ms_proj = ms_backproj.mul(ms_distproj);
|
|
|
|
float dist_err = getL2Norm(mstracker->getTrackingCenter(), fttracker->getTrackingCenter());
|
|
Mat ft_gaussproj = getGaussianProjection(image, cvRound(dist_err), -1, fttracker->getTrackingCenter());
|
|
Mat ft_distproj = getDistanceProjection(image, fttracker->getTrackingCenter());
|
|
Mat ft_proj = ft_gaussproj.mul(ft_distproj);
|
|
|
|
Mat proj = params.ms_tracker_weight * ms_proj + params.ft_tracker_weight * ft_proj + prev_proj;
|
|
|
|
int sample_count = countNonZero(proj);
|
|
cvReleaseMat(&samples);
|
|
cvReleaseMat(&labels);
|
|
samples = cvCreateMat(sample_count, 2, CV_32FC1);
|
|
labels = cvCreateMat(sample_count, 1, CV_32SC1);
|
|
|
|
int count = 0;
|
|
for (int i = 0; i < proj.rows; i++)
|
|
for (int j = 0; j < proj.cols; j++)
|
|
if (proj.at<double> (i, j) > 0) {
|
|
samples->data.fl[count * 2] = (float)i;
|
|
samples->data.fl[count * 2 + 1] = (float)j;
|
|
count++;
|
|
}
|
|
|
|
cv::Mat lbls;
|
|
|
|
EM em_model(1, EM::COV_MAT_SPHERICAL, TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 10000, 0.001));
|
|
em_model.train(cvarrToMat(samples), noArray(), lbls);
|
|
if(labels)
|
|
lbls.copyTo(cvarrToMat(labels));
|
|
|
|
Mat em_means = em_model.get<Mat>("means");
|
|
curr_center.x = (float)em_means.at<float>(0, 0);
|
|
curr_center.y = (float)em_means.at<float>(0, 1);
|
|
}
|
|
|
|
void CvHybridTracker::updateTrackerWithLowPassFilter(Mat) {
|
|
RotatedRect ms_track = mstracker->getTrackingEllipse();
|
|
Point2f ft_center = fttracker->getTrackingCenter();
|
|
|
|
float a = params.low_pass_gain;
|
|
curr_center.x = (1 - a) * prev_center.x + a * (params.ms_tracker_weight * ms_track.center.x + params.ft_tracker_weight * ft_center.x);
|
|
curr_center.y = (1 - a) * prev_center.y + a * (params.ms_tracker_weight * ms_track.center.y + params.ft_tracker_weight * ft_center.y);
|
|
}
|
|
|
|
Rect CvHybridTracker::getTrackingWindow() {
|
|
return prev_window;
|
|
}
|
|
|