389 lines
10 KiB
C

/* sgemm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Subroutine */ int sgemm_(char *transa, char *transb, integer *m, integer *
n, integer *k, real *alpha, real *a, integer *lda, real *b, integer *
ldb, real *beta, real *c__, integer *ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3;
/* Local variables */
integer i__, j, l, info;
logical nota, notb;
real temp;
integer ncola;
extern logical lsame_(char *, char *);
integer nrowa, nrowb;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGEMM performs one of the matrix-matrix operations */
/* C := alpha*op( A )*op( B ) + beta*C, */
/* where op( X ) is one of */
/* op( X ) = X or op( X ) = X', */
/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
/* Arguments */
/* ========== */
/* TRANSA - CHARACTER*1. */
/* On entry, TRANSA specifies the form of op( A ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSA = 'N' or 'n', op( A ) = A. */
/* TRANSA = 'T' or 't', op( A ) = A'. */
/* TRANSA = 'C' or 'c', op( A ) = A'. */
/* Unchanged on exit. */
/* TRANSB - CHARACTER*1. */
/* On entry, TRANSB specifies the form of op( B ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSB = 'N' or 'n', op( B ) = B. */
/* TRANSB = 'T' or 't', op( B ) = B'. */
/* TRANSB = 'C' or 'c', op( B ) = B'. */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of the matrix */
/* op( A ) and of the matrix C. M must be at least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of the matrix */
/* op( B ) and the number of columns of the matrix C. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of columns of the matrix */
/* op( A ) and the number of rows of the matrix op( B ). K must */
/* be at least zero. */
/* Unchanged on exit. */
/* ALPHA - REAL . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - REAL array of DIMENSION ( LDA, ka ), where ka is */
/* k when TRANSA = 'N' or 'n', and is m otherwise. */
/* Before entry with TRANSA = 'N' or 'n', the leading m by k */
/* part of the array A must contain the matrix A, otherwise */
/* the leading k by m part of the array A must contain the */
/* matrix A. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
/* LDA must be at least max( 1, m ), otherwise LDA must be at */
/* least max( 1, k ). */
/* Unchanged on exit. */
/* B - REAL array of DIMENSION ( LDB, kb ), where kb is */
/* n when TRANSB = 'N' or 'n', and is k otherwise. */
/* Before entry with TRANSB = 'N' or 'n', the leading k by n */
/* part of the array B must contain the matrix B, otherwise */
/* the leading n by k part of the array B must contain the */
/* matrix B. */
/* Unchanged on exit. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
/* LDB must be at least max( 1, k ), otherwise LDB must be at */
/* least max( 1, n ). */
/* Unchanged on exit. */
/* BETA - REAL . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then C need not be set on input. */
/* Unchanged on exit. */
/* C - REAL array of DIMENSION ( LDC, n ). */
/* Before entry, the leading m by n part of the array C must */
/* contain the matrix C, except when beta is zero, in which */
/* case C need not be set on entry. */
/* On exit, the array C is overwritten by the m by n matrix */
/* ( alpha*op( A )*op( B ) + beta*C ). */
/* LDC - INTEGER. */
/* On entry, LDC specifies the first dimension of C as declared */
/* in the calling (sub) program. LDC must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Set NOTA and NOTB as true if A and B respectively are not */
/* transposed and set NROWA, NCOLA and NROWB as the number of rows */
/* and columns of A and the number of rows of B respectively. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
nota = lsame_(transa, "N");
notb = lsame_(transb, "N");
if (nota) {
nrowa = *m;
ncola = *k;
} else {
nrowa = *k;
ncola = *m;
}
if (notb) {
nrowb = *k;
} else {
nrowb = *n;
}
/* Test the input parameters. */
info = 0;
if (! nota && ! lsame_(transa, "C") && ! lsame_(
transa, "T")) {
info = 1;
} else if (! notb && ! lsame_(transb, "C") && !
lsame_(transb, "T")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < max(1,nrowa)) {
info = 8;
} else if (*ldb < max(1,nrowb)) {
info = 10;
} else if (*ldc < max(1,*m)) {
info = 13;
}
if (info != 0) {
xerbla_("SGEMM ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
return 0;
}
/* And if alpha.eq.zero. */
if (*alpha == 0.f) {
if (*beta == 0.f) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.f;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (notb) {
if (nota) {
/* Form C := alpha*A*B + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.f;
/* L50: */
}
} else if (*beta != 1.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L60: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
if (b[l + j * b_dim1] != 0.f) {
temp = *alpha * b[l + j * b_dim1];
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
c__[i__ + j * c_dim1] += temp * a[i__ + l *
a_dim1];
/* L70: */
}
}
/* L80: */
}
/* L90: */
}
} else {
/* Form C := alpha*A'*B + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
/* L100: */
}
if (*beta == 0.f) {
c__[i__ + j * c_dim1] = *alpha * temp;
} else {
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
i__ + j * c_dim1];
}
/* L110: */
}
/* L120: */
}
}
} else {
if (nota) {
/* Form C := alpha*A*B' + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = 0.f;
/* L130: */
}
} else if (*beta != 1.f) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
/* L140: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
if (b[j + l * b_dim1] != 0.f) {
temp = *alpha * b[j + l * b_dim1];
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
c__[i__ + j * c_dim1] += temp * a[i__ + l *
a_dim1];
/* L150: */
}
}
/* L160: */
}
/* L170: */
}
} else {
/* Form C := alpha*A'*B' + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp = 0.f;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
/* L180: */
}
if (*beta == 0.f) {
c__[i__ + j * c_dim1] = *alpha * temp;
} else {
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
i__ + j * c_dim1];
}
/* L190: */
}
/* L200: */
}
}
}
return 0;
/* End of SGEMM . */
} /* sgemm_ */