334 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			334 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#ifndef __OPENCV_CUDASTEREO_HPP__
 | 
						|
#define __OPENCV_CUDASTEREO_HPP__
 | 
						|
 | 
						|
#ifndef __cplusplus
 | 
						|
#  error cudastereo.hpp header must be compiled as C++
 | 
						|
#endif
 | 
						|
 | 
						|
#include "opencv2/core/cuda.hpp"
 | 
						|
#include "opencv2/calib3d.hpp"
 | 
						|
 | 
						|
/**
 | 
						|
  @addtogroup cuda
 | 
						|
  @{
 | 
						|
    @defgroup cudastereo Stereo Correspondence
 | 
						|
  @}
 | 
						|
 */
 | 
						|
 | 
						|
namespace cv { namespace cuda {
 | 
						|
 | 
						|
//! @addtogroup cudastereo
 | 
						|
//! @{
 | 
						|
 | 
						|
/////////////////////////////////////////
 | 
						|
// StereoBM
 | 
						|
 | 
						|
/** @brief Class computing stereo correspondence (disparity map) using the block matching algorithm. :
 | 
						|
 | 
						|
@sa StereoBM
 | 
						|
 */
 | 
						|
class CV_EXPORTS StereoBM : public cv::StereoBM
 | 
						|
{
 | 
						|
public:
 | 
						|
    using cv::StereoBM::compute;
 | 
						|
 | 
						|
    virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Creates StereoBM object.
 | 
						|
 | 
						|
@param numDisparities the disparity search range. For each pixel algorithm will find the best
 | 
						|
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
 | 
						|
shifted by changing the minimum disparity.
 | 
						|
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
 | 
						|
(as the block is centered at the current pixel). Larger block size implies smoother, though less
 | 
						|
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
 | 
						|
chance for algorithm to find a wrong correspondence.
 | 
						|
 */
 | 
						|
CV_EXPORTS Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19);
 | 
						|
 | 
						|
/////////////////////////////////////////
 | 
						|
// StereoBeliefPropagation
 | 
						|
 | 
						|
/** @brief Class computing stereo correspondence using the belief propagation algorithm. :
 | 
						|
 | 
						|
The class implements algorithm described in @cite Felzenszwalb2006 . It can compute own data cost
 | 
						|
(using a truncated linear model) or use a user-provided data cost.
 | 
						|
 | 
						|
@note
 | 
						|
   StereoBeliefPropagation requires a lot of memory for message storage:
 | 
						|
 | 
						|
    \f[width \_ step  \cdot height  \cdot ndisp  \cdot 4  \cdot (1 + 0.25)\f]
 | 
						|
 | 
						|
    and for data cost storage:
 | 
						|
 | 
						|
    \f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 +  \dotsm + \frac{1}{4^{levels}})\f]
 | 
						|
 | 
						|
    width_step is the number of bytes in a line including padding.
 | 
						|
 | 
						|
StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms:
 | 
						|
 | 
						|
\f[DataCost = data \_ weight  \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y)  \rvert , max \_ data \_ term)\f]
 | 
						|
 | 
						|
\f[DiscTerm =  \min (disc \_ single \_ jump  \cdot \lvert f_1-f_2  \rvert , max \_ disc \_ term)\f]
 | 
						|
 | 
						|
For more details, see @cite Felzenszwalb2006 .
 | 
						|
 | 
						|
By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for
 | 
						|
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
 | 
						|
performance. To avoid an overflow in this case, the parameters must satisfy the following
 | 
						|
requirement:
 | 
						|
 | 
						|
\f[10  \cdot 2^{levels-1}  \cdot max \_ data \_ term < SHRT \_ MAX\f]
 | 
						|
 | 
						|
@sa StereoMatcher
 | 
						|
 */
 | 
						|
class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher
 | 
						|
{
 | 
						|
public:
 | 
						|
    using cv::StereoMatcher::compute;
 | 
						|
 | 
						|
    /** @overload */
 | 
						|
    virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
 | 
						|
 | 
						|
    /** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost.
 | 
						|
 | 
						|
    @param data User-specified data cost, a matrix of msg_type type and
 | 
						|
    Size(\<image columns\>\*ndisp, \<image rows\>) size.
 | 
						|
    @param disparity Output disparity map. If disparity is empty, the output type is CV_16SC1 .
 | 
						|
    Otherwise, the type is retained. In 16-bit signed format, the disparity values do not have
 | 
						|
    fractional bits.
 | 
						|
    @param stream Stream for the asynchronous version.
 | 
						|
     */
 | 
						|
    virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;
 | 
						|
 | 
						|
    //! number of BP iterations on each level
 | 
						|
    virtual int getNumIters() const = 0;
 | 
						|
    virtual void setNumIters(int iters) = 0;
 | 
						|
 | 
						|
    //! number of levels
 | 
						|
    virtual int getNumLevels() const = 0;
 | 
						|
    virtual void setNumLevels(int levels) = 0;
 | 
						|
 | 
						|
    //! truncation of data cost
 | 
						|
    virtual double getMaxDataTerm() const = 0;
 | 
						|
    virtual void setMaxDataTerm(double max_data_term) = 0;
 | 
						|
 | 
						|
    //! data weight
 | 
						|
    virtual double getDataWeight() const = 0;
 | 
						|
    virtual void setDataWeight(double data_weight) = 0;
 | 
						|
 | 
						|
    //! truncation of discontinuity cost
 | 
						|
    virtual double getMaxDiscTerm() const = 0;
 | 
						|
    virtual void setMaxDiscTerm(double max_disc_term) = 0;
 | 
						|
 | 
						|
    //! discontinuity single jump
 | 
						|
    virtual double getDiscSingleJump() const = 0;
 | 
						|
    virtual void setDiscSingleJump(double disc_single_jump) = 0;
 | 
						|
 | 
						|
    //! type for messages (CV_16SC1 or CV_32FC1)
 | 
						|
    virtual int getMsgType() const = 0;
 | 
						|
    virtual void setMsgType(int msg_type) = 0;
 | 
						|
 | 
						|
    /** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the
 | 
						|
    specified image size ( width and height ).
 | 
						|
     */
 | 
						|
    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Creates StereoBeliefPropagation object.
 | 
						|
 | 
						|
@param ndisp Number of disparities.
 | 
						|
@param iters Number of BP iterations on each level.
 | 
						|
@param levels Number of levels.
 | 
						|
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
 | 
						|
 */
 | 
						|
CV_EXPORTS Ptr<cuda::StereoBeliefPropagation>
 | 
						|
    createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F);
 | 
						|
 | 
						|
/////////////////////////////////////////
 | 
						|
// StereoConstantSpaceBP
 | 
						|
 | 
						|
/** @brief Class computing stereo correspondence using the constant space belief propagation algorithm. :
 | 
						|
 | 
						|
The class implements algorithm described in @cite Yang2010 . StereoConstantSpaceBP supports both local
 | 
						|
minimum and global minimum data cost initialization algorithms. For more details, see the paper
 | 
						|
mentioned above. By default, a local algorithm is used. To enable a global algorithm, set
 | 
						|
use_local_init_data_cost to false .
 | 
						|
 | 
						|
StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms:
 | 
						|
 | 
						|
\f[DataCost = data \_ weight  \cdot \min ( \lvert I_2-I_1  \rvert , max \_ data \_ term)\f]
 | 
						|
 | 
						|
\f[DiscTerm =  \min (disc \_ single \_ jump  \cdot \lvert f_1-f_2  \rvert , max \_ disc \_ term)\f]
 | 
						|
 | 
						|
For more details, see @cite Yang2010 .
 | 
						|
 | 
						|
By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for
 | 
						|
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
 | 
						|
performance. To avoid an overflow in this case, the parameters must satisfy the following
 | 
						|
requirement:
 | 
						|
 | 
						|
\f[10  \cdot 2^{levels-1}  \cdot max \_ data \_ term < SHRT \_ MAX\f]
 | 
						|
 | 
						|
 */
 | 
						|
class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation
 | 
						|
{
 | 
						|
public:
 | 
						|
    //! number of active disparity on the first level
 | 
						|
    virtual int getNrPlane() const = 0;
 | 
						|
    virtual void setNrPlane(int nr_plane) = 0;
 | 
						|
 | 
						|
    virtual bool getUseLocalInitDataCost() const = 0;
 | 
						|
    virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0;
 | 
						|
 | 
						|
    /** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
 | 
						|
    image size (widthand height).
 | 
						|
     */
 | 
						|
    static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Creates StereoConstantSpaceBP object.
 | 
						|
 | 
						|
@param ndisp Number of disparities.
 | 
						|
@param iters Number of BP iterations on each level.
 | 
						|
@param levels Number of levels.
 | 
						|
@param nr_plane Number of disparity levels on the first level.
 | 
						|
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
 | 
						|
 */
 | 
						|
CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP>
 | 
						|
    createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F);
 | 
						|
 | 
						|
/////////////////////////////////////////
 | 
						|
// DisparityBilateralFilter
 | 
						|
 | 
						|
/** @brief Class refining a disparity map using joint bilateral filtering. :
 | 
						|
 | 
						|
The class implements @cite Yang2010 algorithm.
 | 
						|
 */
 | 
						|
class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm
 | 
						|
{
 | 
						|
public:
 | 
						|
    /** @brief Refines a disparity map using joint bilateral filtering.
 | 
						|
 | 
						|
    @param disparity Input disparity map. CV_8UC1 and CV_16SC1 types are supported.
 | 
						|
    @param image Input image. CV_8UC1 and CV_8UC3 types are supported.
 | 
						|
    @param dst Destination disparity map. It has the same size and type as disparity .
 | 
						|
    @param stream Stream for the asynchronous version.
 | 
						|
     */
 | 
						|
    virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0;
 | 
						|
 | 
						|
    virtual int getNumDisparities() const = 0;
 | 
						|
    virtual void setNumDisparities(int numDisparities) = 0;
 | 
						|
 | 
						|
    virtual int getRadius() const = 0;
 | 
						|
    virtual void setRadius(int radius) = 0;
 | 
						|
 | 
						|
    virtual int getNumIters() const = 0;
 | 
						|
    virtual void setNumIters(int iters) = 0;
 | 
						|
 | 
						|
    //! truncation of data continuity
 | 
						|
    virtual double getEdgeThreshold() const = 0;
 | 
						|
    virtual void setEdgeThreshold(double edge_threshold) = 0;
 | 
						|
 | 
						|
    //! truncation of disparity continuity
 | 
						|
    virtual double getMaxDiscThreshold() const = 0;
 | 
						|
    virtual void setMaxDiscThreshold(double max_disc_threshold) = 0;
 | 
						|
 | 
						|
    //! filter range sigma
 | 
						|
    virtual double getSigmaRange() const = 0;
 | 
						|
    virtual void setSigmaRange(double sigma_range) = 0;
 | 
						|
};
 | 
						|
 | 
						|
/** @brief Creates DisparityBilateralFilter object.
 | 
						|
 | 
						|
@param ndisp Number of disparities.
 | 
						|
@param radius Filter radius.
 | 
						|
@param iters Number of iterations.
 | 
						|
 */
 | 
						|
CV_EXPORTS Ptr<cuda::DisparityBilateralFilter>
 | 
						|
    createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1);
 | 
						|
 | 
						|
/////////////////////////////////////////
 | 
						|
// Utility
 | 
						|
 | 
						|
/** @brief Reprojects a disparity image to 3D space.
 | 
						|
 | 
						|
@param disp Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
 | 
						|
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
 | 
						|
fractional bits.
 | 
						|
@param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of
 | 
						|
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
 | 
						|
disparity map.
 | 
						|
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify .
 | 
						|
@param dst_cn The number of channels for output image. Can be 3 or 4.
 | 
						|
@param stream Stream for the asynchronous version.
 | 
						|
 | 
						|
@sa reprojectImageTo3D
 | 
						|
 */
 | 
						|
CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
/** @brief Colors a disparity image.
 | 
						|
 | 
						|
@param src_disp Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
 | 
						|
floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
 | 
						|
fractional bits.
 | 
						|
@param dst_disp Output disparity image. It has the same size as src_disp. The type is CV_8UC4
 | 
						|
in BGRA format (alpha = 255).
 | 
						|
@param ndisp Number of disparities.
 | 
						|
@param stream Stream for the asynchronous version.
 | 
						|
 | 
						|
This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
 | 
						|
first to HSV color space (where different disparity values correspond to different hues) and then
 | 
						|
converting the pixels to RGB for visualization.
 | 
						|
 */
 | 
						|
CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null());
 | 
						|
 | 
						|
//! @}
 | 
						|
 | 
						|
}} // namespace cv { namespace cuda {
 | 
						|
 | 
						|
#endif /* __OPENCV_CUDASTEREO_HPP__ */
 |