139 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			3.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* This sample demonstrates the way you can perform independed tasks
 | 
						|
   on the different GPUs */
 | 
						|
 | 
						|
// Disable some warnings which are caused with CUDA headers
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4201 4408 4100)
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
#include "opencv2/gpu/gpu.hpp"
 | 
						|
 | 
						|
#if defined(__arm__)
 | 
						|
int main()
 | 
						|
{
 | 
						|
    std::cout << "Unsupported for ARM CUDA library." << std::endl;
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
#else
 | 
						|
 | 
						|
#include <cuda.h>
 | 
						|
#include <cuda_runtime.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
using namespace cv::gpu;
 | 
						|
 | 
						|
#define safeCall(expr) safeCall_(expr, #expr, __FILE__, __LINE__)
 | 
						|
inline void safeCall_(int code, const char* expr, const char* file, int line)
 | 
						|
{
 | 
						|
    if (code != CUDA_SUCCESS)
 | 
						|
    {
 | 
						|
        std::cout << "CUDA driver API error: code " << code << ", expr " << expr
 | 
						|
        << ", file " << file << ", line " << line << endl;
 | 
						|
        exit(-1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct Worker: public ParallelLoopBody
 | 
						|
{
 | 
						|
    Worker(int num_devices)
 | 
						|
    {
 | 
						|
        count = num_devices;
 | 
						|
        contexts = new CUcontext[num_devices];
 | 
						|
        for (int device_id = 0; device_id < num_devices; device_id++)
 | 
						|
        {
 | 
						|
            CUdevice device;
 | 
						|
            safeCall(cuDeviceGet(&device, device_id));
 | 
						|
            safeCall(cuCtxCreate(&contexts[device_id], 0, device));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void operator() (const Range& range) const
 | 
						|
    {
 | 
						|
        for (int device_id = range.start; device_id != range.end; ++device_id)
 | 
						|
        {
 | 
						|
            // Set the proper context
 | 
						|
            safeCall(cuCtxPushCurrent(contexts[device_id]));
 | 
						|
 | 
						|
            Mat src(1000, 1000, CV_32F);
 | 
						|
            Mat dst;
 | 
						|
 | 
						|
            RNG rng(0);
 | 
						|
            rng.fill(src, RNG::UNIFORM, 0, 1);
 | 
						|
 | 
						|
            // CPU works
 | 
						|
            transpose(src, dst);
 | 
						|
 | 
						|
            // GPU works
 | 
						|
            GpuMat d_src(src);
 | 
						|
            GpuMat d_dst;
 | 
						|
            transpose(d_src, d_dst);
 | 
						|
 | 
						|
            // Check results
 | 
						|
            bool passed = norm(dst - Mat(d_dst), NORM_INF) < 1e-3;
 | 
						|
            std::cout << "GPU #" << device_id << " (" << DeviceInfo().name() << "): "
 | 
						|
            << (passed ? "passed" : "FAILED") << endl;
 | 
						|
 | 
						|
            // Deallocate data here, otherwise deallocation will be performed
 | 
						|
            // after context is extracted from the stack
 | 
						|
            d_src.release();
 | 
						|
            d_dst.release();
 | 
						|
 | 
						|
            CUcontext prev_context;
 | 
						|
            safeCall(cuCtxPopCurrent(&prev_context));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ~Worker()
 | 
						|
    {
 | 
						|
        if ((contexts != NULL) && count != 0)
 | 
						|
        {
 | 
						|
            for (int device_id = 0; device_id < count; device_id++)
 | 
						|
            {
 | 
						|
                safeCall(cuCtxDestroy(contexts[device_id]));
 | 
						|
            }
 | 
						|
 | 
						|
            delete[] contexts;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    CUcontext* contexts;
 | 
						|
    int count;
 | 
						|
};
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
    int num_devices = getCudaEnabledDeviceCount();
 | 
						|
    if (num_devices < 2)
 | 
						|
    {
 | 
						|
        std::cout << "Two or more GPUs are required\n";
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    for (int i = 0; i < num_devices; ++i)
 | 
						|
    {
 | 
						|
        cv::gpu::printShortCudaDeviceInfo(i);
 | 
						|
 | 
						|
        DeviceInfo dev_info(i);
 | 
						|
        if (!dev_info.isCompatible())
 | 
						|
        {
 | 
						|
            std::cout << "GPU module isn't built for GPU #" << i << " ("
 | 
						|
                 << dev_info.name() << ", CC " << dev_info.majorVersion()
 | 
						|
                 << dev_info.minorVersion() << "\n";
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Init CUDA Driver API
 | 
						|
    safeCall(cuInit(0));
 | 
						|
 | 
						|
    // Execute calculation
 | 
						|
    parallel_for_(cv::Range(0, num_devices), Worker(num_devices));
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |