opencv/modules/gpu/src/arithm.cpp
Vladislav Vinogradov 51d5959aca added gpu add, subtract, multiply, divide, absdiff with Scalar.
added gpu exp, log, magnitude, based on NPP.
updated setTo with new NPP functions.
minor fix in tests and comments.
2010-09-27 12:44:57 +00:00

551 lines
18 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
void cv::gpu::transpose(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); }
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; }
void cv::gpu::flip(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); }
void cv::gpu::minMax(const GpuMat&, double*, double*) { throw_nogpu(); }
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::exp(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::log(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
////////////////////////////////////////////////////////////////////////
// add subtract multiply divide
namespace
{
typedef NppStatus (*npp_arithm_8u_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
NppiSize oSizeROI, int nScaleFactor);
typedef NppStatus (*npp_arithm_32s_t)(const Npp32s* pSrc1, int nSrc1Step, const Npp32s* pSrc2, int nSrc2Step, Npp32s* pDst,
int nDstStep, NppiSize oSizeROI);
typedef NppStatus (*npp_arithm_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
int nDstStep, NppiSize oSizeROI);
void nppArithmCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
npp_arithm_8u_t npp_func_8uc1, npp_arithm_8u_t npp_func_8uc4,
npp_arithm_32s_t npp_func_32sc1, npp_arithm_32f_t npp_func_32fc1)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
dst.create( src1.size(), src1.type() );
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
switch (src1.type())
{
case CV_8UC1:
nppSafeCall( npp_func_8uc1(src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
dst.ptr<Npp8u>(), dst.step, sz, 0) );
break;
case CV_8UC4:
nppSafeCall( npp_func_8uc4(src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
dst.ptr<Npp8u>(), dst.step, sz, 0) );
break;
case CV_32SC1:
nppSafeCall( npp_func_32sc1(src1.ptr<Npp32s>(), src1.step,
src2.ptr<Npp32s>(), src2.step,
dst.ptr<Npp32s>(), dst.step, sz) );
break;
case CV_32FC1:
nppSafeCall( npp_func_32fc1(src1.ptr<Npp32f>(), src1.step,
src2.ptr<Npp32f>(), src2.step,
dst.ptr<Npp32f>(), dst.step, sz) );
break;
default:
CV_Assert(!"Unsupported source type");
}
}
typedef NppStatus (*npp_arithm_scalar_32f_t)(const Npp32f *pSrc, int nSrcStep, Npp32f nValue, Npp32f *pDst,
int nDstStep, NppiSize oSizeROI);
void nppArithmCaller(const GpuMat& src1, const Scalar& sc, GpuMat& dst,
npp_arithm_scalar_32f_t npp_func)
{
CV_Assert(src1.type() == CV_32FC1);
dst.create(src1.size(), src1.type());
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
nppSafeCall( npp_func(src1.ptr<Npp32f>(), src1.step, (Npp32f)sc[0], dst.ptr<Npp32f>(), dst.step, sz) );
}
}
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32s_C1R, nppiAdd_32f_C1R);
}
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32s_C1R, nppiSub_32f_C1R);
}
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32s_C1R, nppiMul_32f_C1R);
}
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32s_C1R, nppiDiv_32f_C1R);
}
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst)
{
nppArithmCaller(src, sc, dst, nppiAddC_32f_C1R);
}
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst)
{
nppArithmCaller(src, sc, dst, nppiSubC_32f_C1R);
}
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst)
{
nppArithmCaller(src, sc, dst, nppiMulC_32f_C1R);
}
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst)
{
nppArithmCaller(src, sc, dst, nppiDivC_32f_C1R);
}
////////////////////////////////////////////////////////////////////////
// transpose
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst)
{
CV_Assert(src.type() == CV_8UC1);
dst.create( src.cols, src.rows, src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz) );
}
////////////////////////////////////////////////////////////////////////
// absdiff
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
dst.create( src1.size(), src1.type() );
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
switch (src1.type())
{
case CV_8UC1:
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
dst.ptr<Npp8u>(), dst.step, sz) );
break;
case CV_8UC4:
nppSafeCall( nppiAbsDiff_8u_C4R(src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
dst.ptr<Npp8u>(), dst.step, sz) );
break;
case CV_32SC1:
nppSafeCall( nppiAbsDiff_32s_C1R(src1.ptr<Npp32s>(), src1.step,
src2.ptr<Npp32s>(), src2.step,
dst.ptr<Npp32s>(), dst.step, sz) );
break;
case CV_32FC1:
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), src1.step,
src2.ptr<Npp32f>(), src2.step,
dst.ptr<Npp32f>(), dst.step, sz) );
break;
default:
CV_Assert(!"Unsupported source type");
}
}
void cv::gpu::absdiff(const GpuMat& src, const Scalar& s, GpuMat& dst)
{
CV_Assert(src.type() == CV_32FC1);
dst.create( src.size(), src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiAbsDiffC_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz, (Npp32f)s[0]) );
}
////////////////////////////////////////////////////////////////////////
// compare
namespace cv { namespace gpu { namespace matrix_operations
{
void compare_ne_8u(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
}}}
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
dst.create( src1.size(), CV_8UC1 );
static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
if (src1.type() == CV_8UC4)
{
if (cmpop != CMP_NE)
{
nppSafeCall( nppiCompare_8u_C4R(src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
}
else
{
matrix_operations::compare_ne_8u(src1, src2, dst);
}
}
else
{
if (cmpop != CMP_NE)
{
nppSafeCall( nppiCompare_32f_C1R(src1.ptr<Npp32f>(), src1.step,
src2.ptr<Npp32f>(), src2.step,
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
}
else
{
matrix_operations::compare_ne_32f(src1, src2, dst);
}
}
}
////////////////////////////////////////////////////////////////////////
// meanStdDev
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev)
{
CV_Assert(src.type() == CV_8UC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), src.step, sz, mean.val, stddev.val) );
}
////////////////////////////////////////////////////////////////////////
// norm
double cv::gpu::norm(const GpuMat& src1, int normType)
{
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType);
}
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
{
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
CV_Assert(src1.type() == CV_8UC1);
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
NppiSize oSizeROI, Npp64f* pRetVal);
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
NppiSize sz;
sz.width = src1.cols;
sz.height = src1.rows;
int funcIdx = normType >> 1;
double retVal;
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), src1.step,
src2.ptr<Npp8u>(), src2.step,
sz, &retVal) );
return retVal;
}
////////////////////////////////////////////////////////////////////////
// flip
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
dst.create( src.size(), src.type() );
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiMirror_8u_C1R(src.ptr<Npp8u>(), src.step,
dst.ptr<Npp8u>(), dst.step, sz,
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
}
else
{
nppSafeCall( nppiMirror_8u_C4R(src.ptr<Npp8u>(), src.step,
dst.ptr<Npp8u>(), dst.step, sz,
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
}
}
////////////////////////////////////////////////////////////////////////
// sum
Scalar cv::gpu::sum(const GpuMat& src)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
int bufsz;
if (src.type() == CV_8UC1)
{
nppiReductionGetBufferHostSize_8u_C1R(sz, &bufsz);
GpuMat buf(1, bufsz, CV_32S);
Scalar res;
nppSafeCall( nppiSum_8u_C1R(src.ptr<Npp8u>(), src.step, sz, buf.ptr<Npp32s>(), res.val) );
return res;
}
else
{
nppiReductionGetBufferHostSize_8u_C4R(sz, &bufsz);
GpuMat buf(1, bufsz, CV_32S);
Scalar res;
nppSafeCall( nppiSum_8u_C4R(src.ptr<Npp8u>(), src.step, sz, buf.ptr<Npp32s>(), res.val) );
return res;
}
}
////////////////////////////////////////////////////////////////////////
// minMax
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal)
{
CV_Assert(src.type() == CV_8UC1);
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
Npp8u min_res, max_res;
nppSafeCall( nppiMinMax_8u_C1R(src.ptr<Npp8u>(), src.step, sz, &min_res, &max_res) );
if (minVal)
*minVal = min_res;
if (maxVal)
*maxVal = max_res;
}
////////////////////////////////////////////////////////////////////////
// LUT
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst)
{
class LevelsInit
{
public:
Npp32s pLevels[256];
const Npp32s* pLevels3[3];
int nValues3[3];
LevelsInit()
{
nValues3[0] = nValues3[1] = nValues3[2] = 256;
for (int i = 0; i < 256; ++i)
pLevels[i] = i;
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
}
};
static LevelsInit lvls;
int cn = src.channels();
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous());
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));
NppiSize sz;
sz.height = src.rows;
sz.width = src.cols;
Mat nppLut;
lut.convertTo(nppLut, CV_32S);
if (src.type() == CV_8UC1)
{
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz,
nppLut.ptr<Npp32s>(), lvls.pLevels, 256) );
}
else
{
Mat nppLut3[3];
const Npp32s* pValues3[3];
if (nppLut.channels() == 1)
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
else
{
cv::split(nppLut, nppLut3);
pValues3[0] = nppLut3[0].ptr<Npp32s>();
pValues3[1] = nppLut3[1].ptr<Npp32s>();
pValues3[2] = nppLut3[2].ptr<Npp32s>();
}
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz,
pValues3, lvls.pLevels3, lvls.nValues3) );
}
}
////////////////////////////////////////////////////////////////////////
// exp
void cv::gpu::exp(const GpuMat& src, GpuMat& dst)
{
CV_Assert(src.type() == CV_32FC1);
dst.create(src.size(), src.type());
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiExp_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
}
////////////////////////////////////////////////////////////////////////
// log
void cv::gpu::log(const GpuMat& src, GpuMat& dst)
{
CV_Assert(src.type() == CV_32FC1);
dst.create(src.size(), src.type());
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiLn_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
}
////////////////////////////////////////////////////////////////////////
// magnitude
void cv::gpu::magnitude(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
{
CV_DbgAssert(src1.type() == src2.type() && src1.size() == src2.size());
CV_Assert(src1.type() == CV_32FC1);
GpuMat src(src1.size(), CV_32FC2);
GpuMat srcs[] = {src1, src2};
cv::gpu::merge(srcs, 2, src);
dst.create(src1.size(), src1.type());
NppiSize sz;
sz.width = src.cols;
sz.height = src.rows;
nppSafeCall( nppiMagnitude_32fc32f_C1R(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
}
#endif /* !defined (HAVE_CUDA) */