815 lines
31 KiB
C++
815 lines
31 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
/* ////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Filling CvMat/IplImage instances with random numbers
|
|
//
|
|
// */
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
///////////////////////////// Functions Declaration //////////////////////////////////////
|
|
|
|
/*
|
|
Multiply-with-carry generator is used here:
|
|
temp = ( A*X(n) + carry )
|
|
X(n+1) = temp mod (2^32)
|
|
carry = temp / (2^32)
|
|
*/
|
|
|
|
#define RNG_NEXT(x) ((uint64)(unsigned)(x)*CV_RNG_COEFF + ((x) >> 32))
|
|
|
|
/***************************************************************************************\
|
|
* Pseudo-Random Number Generators (PRNGs) *
|
|
\***************************************************************************************/
|
|
|
|
template<typename T> static void
|
|
randBits_( T* arr, int len, uint64* state, const Vec2i* p, bool small_flag )
|
|
{
|
|
uint64 temp = *state;
|
|
int i;
|
|
|
|
if( !small_flag )
|
|
{
|
|
for( i = 0; i <= len - 4; i += 4 )
|
|
{
|
|
int t0, t1;
|
|
|
|
temp = RNG_NEXT(temp);
|
|
t0 = ((int)temp & p[i][0]) + p[i][1];
|
|
temp = RNG_NEXT(temp);
|
|
t1 = ((int)temp & p[i+1][0]) + p[i+1][1];
|
|
arr[i] = saturate_cast<T>(t0);
|
|
arr[i+1] = saturate_cast<T>(t1);
|
|
|
|
temp = RNG_NEXT(temp);
|
|
t0 = ((int)temp & p[i+2][0]) + p[i+2][1];
|
|
temp = RNG_NEXT(temp);
|
|
t1 = ((int)temp & p[i+3][0]) + p[i+3][1];
|
|
arr[i+2] = saturate_cast<T>(t0);
|
|
arr[i+3] = saturate_cast<T>(t1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i <= len - 4; i += 4 )
|
|
{
|
|
int t0, t1, t;
|
|
temp = RNG_NEXT(temp);
|
|
t = (int)temp;
|
|
t0 = (t & p[i][0]) + p[i][1];
|
|
t1 = ((t >> 8) & p[i+1][0]) + p[i+1][1];
|
|
arr[i] = saturate_cast<T>(t0);
|
|
arr[i+1] = saturate_cast<T>(t1);
|
|
|
|
t0 = ((t >> 16) & p[i+2][0]) + p[i+2][1];
|
|
t1 = ((t >> 24) & p[i+3][0]) + p[i+3][1];
|
|
arr[i+2] = saturate_cast<T>(t0);
|
|
arr[i+3] = saturate_cast<T>(t1);
|
|
}
|
|
}
|
|
|
|
for( ; i < len; i++ )
|
|
{
|
|
int t0;
|
|
temp = RNG_NEXT(temp);
|
|
|
|
t0 = ((int)temp & p[i][0]) + p[i][1];
|
|
arr[i] = saturate_cast<T>(t0);
|
|
}
|
|
|
|
*state = temp;
|
|
}
|
|
|
|
struct DivStruct
|
|
{
|
|
unsigned d;
|
|
unsigned M;
|
|
int sh1, sh2;
|
|
int delta;
|
|
};
|
|
|
|
template<typename T> static void
|
|
randi_( T* arr, int len, uint64* state, const DivStruct* p )
|
|
{
|
|
uint64 temp = *state;
|
|
int i = 0;
|
|
unsigned t0, t1, v0, v1;
|
|
|
|
for( i = 0; i <= len - 4; i += 4 )
|
|
{
|
|
temp = RNG_NEXT(temp);
|
|
t0 = (unsigned)temp;
|
|
temp = RNG_NEXT(temp);
|
|
t1 = (unsigned)temp;
|
|
v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32);
|
|
v1 = (unsigned)(((uint64)t1 * p[i+1].M) >> 32);
|
|
v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2;
|
|
v1 = (v1 + ((t1 - v1) >> p[i+1].sh1)) >> p[i+1].sh2;
|
|
v0 = t0 - v0*p[i].d + p[i].delta;
|
|
v1 = t1 - v1*p[i+1].d + p[i+1].delta;
|
|
arr[i] = saturate_cast<T>((int)v0);
|
|
arr[i+1] = saturate_cast<T>((int)v1);
|
|
|
|
temp = RNG_NEXT(temp);
|
|
t0 = (unsigned)temp;
|
|
temp = RNG_NEXT(temp);
|
|
t1 = (unsigned)temp;
|
|
v0 = (unsigned)(((uint64)t0 * p[i+2].M) >> 32);
|
|
v1 = (unsigned)(((uint64)t1 * p[i+3].M) >> 32);
|
|
v0 = (v0 + ((t0 - v0) >> p[i+2].sh1)) >> p[i+2].sh2;
|
|
v1 = (v1 + ((t1 - v1) >> p[i+3].sh1)) >> p[i+3].sh2;
|
|
v0 = t0 - v0*p[i+2].d + p[i+2].delta;
|
|
v1 = t1 - v1*p[i+3].d + p[i+3].delta;
|
|
arr[i+2] = saturate_cast<T>((int)v0);
|
|
arr[i+3] = saturate_cast<T>((int)v1);
|
|
}
|
|
|
|
for( ; i < len; i++ )
|
|
{
|
|
temp = RNG_NEXT(temp);
|
|
t0 = (unsigned)temp;
|
|
v0 = (unsigned)(((uint64)t0 * p[i].M) >> 32);
|
|
v0 = (v0 + ((t0 - v0) >> p[i].sh1)) >> p[i].sh2;
|
|
v0 = t0 - v0*p[i].d + p[i].delta;
|
|
arr[i] = saturate_cast<T>((int)v0);
|
|
}
|
|
|
|
*state = temp;
|
|
}
|
|
|
|
|
|
#define DEF_RANDI_FUNC(suffix, type) \
|
|
static void randBits_##suffix(type* arr, int len, uint64* state, \
|
|
const Vec2i* p, bool small_flag) \
|
|
{ randBits_(arr, len, state, p, small_flag); } \
|
|
\
|
|
static void randi_##suffix(type* arr, int len, uint64* state, \
|
|
const DivStruct* p, bool ) \
|
|
{ randi_(arr, len, state, p); }
|
|
|
|
DEF_RANDI_FUNC(8u, uchar)
|
|
DEF_RANDI_FUNC(8s, schar)
|
|
DEF_RANDI_FUNC(16u, ushort)
|
|
DEF_RANDI_FUNC(16s, short)
|
|
DEF_RANDI_FUNC(32s, int)
|
|
|
|
static void randf_32f( float* arr, int len, uint64* state, const Vec2f* p, bool )
|
|
{
|
|
uint64 temp = *state;
|
|
int i;
|
|
|
|
for( i = 0; i <= len - 4; i += 4 )
|
|
{
|
|
float f0, f1;
|
|
|
|
temp = RNG_NEXT(temp);
|
|
f0 = (int)temp*p[i][0] + p[i][1];
|
|
temp = RNG_NEXT(temp);
|
|
f1 = (int)temp*p[i+1][0] + p[i+1][1];
|
|
arr[i] = f0; arr[i+1] = f1;
|
|
|
|
temp = RNG_NEXT(temp);
|
|
f0 = (int)temp*p[i+2][0] + p[i+2][1];
|
|
temp = RNG_NEXT(temp);
|
|
f1 = (int)temp*p[i+3][0] + p[i+3][1];
|
|
arr[i+2] = f0; arr[i+3] = f1;
|
|
}
|
|
|
|
for( ; i < len; i++ )
|
|
{
|
|
temp = RNG_NEXT(temp);
|
|
arr[i] = (int)temp*p[i][0] + p[i][1];
|
|
}
|
|
|
|
*state = temp;
|
|
}
|
|
|
|
|
|
static void
|
|
randf_64f( double* arr, int len, uint64* state, const Vec2d* p, bool )
|
|
{
|
|
uint64 temp = *state;
|
|
int64 v = 0;
|
|
int i;
|
|
|
|
for( i = 0; i <= len - 4; i += 4 )
|
|
{
|
|
double f0, f1;
|
|
|
|
temp = RNG_NEXT(temp);
|
|
v = (temp >> 32)|(temp << 32);
|
|
f0 = v*p[i][0] + p[i][1];
|
|
temp = RNG_NEXT(temp);
|
|
v = (temp >> 32)|(temp << 32);
|
|
f1 = v*p[i+1][0] + p[i+1][1];
|
|
arr[i] = f0; arr[i+1] = f1;
|
|
|
|
temp = RNG_NEXT(temp);
|
|
v = (temp >> 32)|(temp << 32);
|
|
f0 = v*p[i+2][0] + p[i+2][1];
|
|
temp = RNG_NEXT(temp);
|
|
v = (temp >> 32)|(temp << 32);
|
|
f1 = v*p[i+3][0] + p[i+3][1];
|
|
arr[i+2] = f0; arr[i+3] = f1;
|
|
}
|
|
|
|
for( ; i < len; i++ )
|
|
{
|
|
temp = RNG_NEXT(temp);
|
|
v = (temp >> 32)|(temp << 32);
|
|
arr[i] = v*p[i][0] + p[i][1];
|
|
}
|
|
|
|
*state = temp;
|
|
}
|
|
|
|
typedef void (*RandFunc)(uchar* arr, int len, uint64* state, const void* p, bool small_flag);
|
|
|
|
|
|
static RandFunc randTab[][8] =
|
|
{
|
|
{
|
|
(RandFunc)randi_8u, (RandFunc)randi_8s, (RandFunc)randi_16u, (RandFunc)randi_16s,
|
|
(RandFunc)randi_32s, (RandFunc)randf_32f, (RandFunc)randf_64f, 0
|
|
},
|
|
{
|
|
(RandFunc)randBits_8u, (RandFunc)randBits_8s, (RandFunc)randBits_16u, (RandFunc)randBits_16s,
|
|
(RandFunc)randBits_32s, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
/*
|
|
The code below implements the algorithm described in
|
|
"The Ziggurat Method for Generating Random Variables"
|
|
by Marsaglia and Tsang, Journal of Statistical Software.
|
|
*/
|
|
static void
|
|
randn_0_1_32f( float* arr, int len, uint64* state )
|
|
{
|
|
const float r = 3.442620f; // The start of the right tail
|
|
const float rng_flt = 2.3283064365386962890625e-10f; // 2^-32
|
|
static unsigned kn[128];
|
|
static float wn[128], fn[128];
|
|
uint64 temp = *state;
|
|
static bool initialized=false;
|
|
int i;
|
|
|
|
if( !initialized )
|
|
{
|
|
const double m1 = 2147483648.0;
|
|
double dn = 3.442619855899, tn = dn, vn = 9.91256303526217e-3;
|
|
|
|
// Set up the tables
|
|
double q = vn/std::exp(-.5*dn*dn);
|
|
kn[0] = (unsigned)((dn/q)*m1);
|
|
kn[1] = 0;
|
|
|
|
wn[0] = (float)(q/m1);
|
|
wn[127] = (float)(dn/m1);
|
|
|
|
fn[0] = 1.f;
|
|
fn[127] = (float)std::exp(-.5*dn*dn);
|
|
|
|
for(i=126;i>=1;i--)
|
|
{
|
|
dn = std::sqrt(-2.*std::log(vn/dn+std::exp(-.5*dn*dn)));
|
|
kn[i+1] = (unsigned)((dn/tn)*m1);
|
|
tn = dn;
|
|
fn[i] = (float)std::exp(-.5*dn*dn);
|
|
wn[i] = (float)(dn/m1);
|
|
}
|
|
initialized = true;
|
|
}
|
|
|
|
for( i = 0; i < len; i++ )
|
|
{
|
|
float x, y;
|
|
for(;;)
|
|
{
|
|
int hz = (int)temp;
|
|
temp = RNG_NEXT(temp);
|
|
int iz = hz & 127;
|
|
x = hz*wn[iz];
|
|
if( (unsigned)std::abs(hz) < kn[iz] )
|
|
break;
|
|
if( iz == 0) // iz==0, handles the base strip
|
|
{
|
|
do
|
|
{
|
|
x = (unsigned)temp*rng_flt;
|
|
temp = RNG_NEXT(temp);
|
|
y = (unsigned)temp*rng_flt;
|
|
temp = RNG_NEXT(temp);
|
|
x = (float)(-std::log(x+FLT_MIN)*0.2904764);
|
|
y = (float)-std::log(y+FLT_MIN);
|
|
} // .2904764 is 1/r
|
|
while( y + y < x*x );
|
|
x = hz > 0 ? r + x : -r - x;
|
|
break;
|
|
}
|
|
// iz > 0, handle the wedges of other strips
|
|
y = (unsigned)temp*rng_flt;
|
|
temp = RNG_NEXT(temp);
|
|
if( fn[iz] + y*(fn[iz - 1] - fn[iz]) < std::exp(-.5*x*x) )
|
|
break;
|
|
}
|
|
arr[i] = x;
|
|
}
|
|
*state = temp;
|
|
}
|
|
|
|
|
|
double RNG::gaussian(double sigma)
|
|
{
|
|
float temp;
|
|
randn_0_1_32f( &temp, 1, &state );
|
|
return temp*sigma;
|
|
}
|
|
|
|
|
|
template<typename T, typename PT> static void
|
|
randnScale_( const float* src, T* dst, int len, int cn, const PT* mean, const PT* stddev, bool stdmtx )
|
|
{
|
|
int i, j, k;
|
|
if( !stdmtx )
|
|
{
|
|
if( cn == 1 )
|
|
{
|
|
PT b = mean[0], a = stddev[0];
|
|
for( i = 0; i < len; i++ )
|
|
dst[i] = saturate_cast<T>(src[i]*a + b);
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < len; i++, src += cn, dst += cn )
|
|
for( k = 0; k < cn; k++ )
|
|
dst[k] = saturate_cast<T>(src[k]*stddev[k] + mean[k]);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i < len; i++, src += cn, dst += cn )
|
|
{
|
|
for( j = 0; j < cn; j++ )
|
|
{
|
|
PT s = mean[j];
|
|
for( k = 0; k < cn; k++ )
|
|
s += src[k]*stddev[j*cn + k];
|
|
dst[j] = saturate_cast<T>(s);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void randnScale_8u( const float* src, uchar* dst, int len, int cn,
|
|
const float* mean, const float* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
static void randnScale_8s( const float* src, schar* dst, int len, int cn,
|
|
const float* mean, const float* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
static void randnScale_16u( const float* src, ushort* dst, int len, int cn,
|
|
const float* mean, const float* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
static void randnScale_16s( const float* src, short* dst, int len, int cn,
|
|
const float* mean, const float* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
static void randnScale_32s( const float* src, int* dst, int len, int cn,
|
|
const float* mean, const float* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
static void randnScale_32f( const float* src, float* dst, int len, int cn,
|
|
const float* mean, const float* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
static void randnScale_64f( const float* src, double* dst, int len, int cn,
|
|
const double* mean, const double* stddev, bool stdmtx )
|
|
{ randnScale_(src, dst, len, cn, mean, stddev, stdmtx); }
|
|
|
|
typedef void (*RandnScaleFunc)(const float* src, uchar* dst, int len, int cn,
|
|
const uchar*, const uchar*, bool);
|
|
|
|
static RandnScaleFunc randnScaleTab[] =
|
|
{
|
|
(RandnScaleFunc)randnScale_8u, (RandnScaleFunc)randnScale_8s, (RandnScaleFunc)randnScale_16u,
|
|
(RandnScaleFunc)randnScale_16s, (RandnScaleFunc)randnScale_32s, (RandnScaleFunc)randnScale_32f,
|
|
(RandnScaleFunc)randnScale_64f, 0
|
|
};
|
|
|
|
void RNG::fill( InputOutputArray _mat, int disttype, InputArray _param1arg, InputArray _param2arg )
|
|
{
|
|
Mat mat = _mat.getMat(), _param1 = _param1arg.getMat(), _param2 = _param2arg.getMat();
|
|
int depth = mat.depth(), cn = mat.channels();
|
|
AutoBuffer<double> _parambuf;
|
|
int j, k, fast_int_mode = 0, smallFlag = 1;
|
|
RandFunc func = 0;
|
|
RandnScaleFunc scaleFunc = 0;
|
|
|
|
CV_Assert(_param1.channels() == 1 && (_param1.rows == 1 || _param1.cols == 1) &&
|
|
(_param1.rows + _param1.cols - 1 == cn ||
|
|
(_param1.size() == Size(1, 4) && _param1.type() == CV_64F && cn <= 4)));
|
|
CV_Assert( _param2.channels() == 1 &&
|
|
(((_param2.rows == 1 || _param2.cols == 1) &&
|
|
(_param2.rows + _param2.cols - 1 == cn ||
|
|
(_param1.size() == Size(1, 4) && _param1.type() == CV_64F && cn <= 4))) ||
|
|
(_param2.rows == cn && _param2.cols == cn && disttype == NORMAL)));
|
|
|
|
Vec2i* ip = 0;
|
|
Vec2d* dp = 0;
|
|
Vec2f* fp = 0;
|
|
DivStruct* ds = 0;
|
|
uchar* mean = 0;
|
|
uchar* stddev = 0;
|
|
bool stdmtx = false;
|
|
|
|
if( disttype == UNIFORM )
|
|
{
|
|
_parambuf.allocate(cn*8);
|
|
double* parambuf = _parambuf;
|
|
const double* p1 = (const double*)_param1.data;
|
|
const double* p2 = (const double*)_param2.data;
|
|
|
|
if( !_param1.isContinuous() || _param1.type() != CV_64F )
|
|
{
|
|
Mat tmp(_param1.size(), CV_64F, parambuf);
|
|
_param1.convertTo(tmp, CV_64F);
|
|
p1 = parambuf;
|
|
}
|
|
|
|
if( !_param2.isContinuous() || _param2.type() != CV_64F )
|
|
{
|
|
Mat tmp(_param2.size(), CV_64F, parambuf + cn);
|
|
_param2.convertTo(tmp, CV_64F);
|
|
p2 = parambuf + cn;
|
|
}
|
|
|
|
if( depth <= CV_32S )
|
|
{
|
|
ip = (Vec2i*)(parambuf + cn*2);
|
|
for( j = 0, fast_int_mode = 1; j < cn; j++ )
|
|
{
|
|
double a = min(p1[j], p2[j]);
|
|
double b = max(p1[j], p2[j]);
|
|
ip[j][1] = cvCeil(a);
|
|
int idiff = ip[j][0] = cvFloor(b) - ip[j][1] - 1;
|
|
double diff = b - a;
|
|
|
|
fast_int_mode &= diff <= 4294967296. && (idiff & (idiff+1)) == 0;
|
|
if( fast_int_mode )
|
|
smallFlag &= idiff <= 255;
|
|
}
|
|
|
|
if( !fast_int_mode )
|
|
{
|
|
ds = (DivStruct*)(ip + cn);
|
|
for( j = 0; j < cn; j++ )
|
|
{
|
|
ds[j].delta = ip[j][1];
|
|
unsigned d = ds[j].d = (unsigned)(ip[j][0]+1);
|
|
int l = 0;
|
|
while(((uint64)1 << l) < d)
|
|
l++;
|
|
ds[j].M = (unsigned)(((uint64)1 << 32)*(((uint64)1 << l) - d)/d) + 1;
|
|
ds[j].sh1 = min(l, 1);
|
|
ds[j].sh2 = max(l - 1, 0);
|
|
}
|
|
}
|
|
|
|
func = randTab[fast_int_mode][depth];
|
|
}
|
|
else
|
|
{
|
|
double scale = depth == CV_64F ?
|
|
5.4210108624275221700372640043497e-20 : // 2**-64
|
|
2.3283064365386962890625e-10; // 2**-32
|
|
|
|
// for each channel i compute such dparam[0][i] & dparam[1][i],
|
|
// so that a signed 32/64-bit integer X is transformed to
|
|
// the range [param1.val[i], param2.val[i]) using
|
|
// dparam[1][i]*X + dparam[0][i]
|
|
if( depth == CV_32F )
|
|
{
|
|
fp = (Vec2f*)(parambuf + cn*2);
|
|
for( j = 0; j < cn; j++ )
|
|
{
|
|
fp[j][0] = (float)((p2[j] - p1[j])*scale);
|
|
fp[j][1] = (float)((p2[j] + p1[j])*0.5);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dp = (Vec2d*)(parambuf + cn*2);
|
|
for( j = 0; j < cn; j++ )
|
|
{
|
|
dp[j][0] = ((p2[j] - p1[j])*scale);
|
|
dp[j][1] = ((p2[j] + p1[j])*0.5);
|
|
}
|
|
}
|
|
|
|
func = randTab[0][depth];
|
|
}
|
|
CV_Assert( func != 0 );
|
|
}
|
|
else if( disttype == CV_RAND_NORMAL )
|
|
{
|
|
_parambuf.allocate(_param1.total() + _param2.total());
|
|
double* parambuf = _parambuf;
|
|
|
|
int ptype = depth == CV_64F ? CV_64F : CV_32F;
|
|
if( _param1.isContinuous() && _param1.type() == ptype )
|
|
mean = _param1.data;
|
|
else
|
|
{
|
|
Mat tmp(_param1.size(), ptype, parambuf);
|
|
_param1.convertTo(tmp, ptype);
|
|
mean = (uchar*)parambuf;
|
|
}
|
|
|
|
if( _param2.isContinuous() && _param2.type() == ptype )
|
|
stddev = _param2.data;
|
|
else
|
|
{
|
|
Mat tmp(_param2.size(), ptype, parambuf + cn);
|
|
_param2.convertTo(tmp, ptype);
|
|
stddev = (uchar*)(parambuf + cn);
|
|
}
|
|
|
|
stdmtx = _param2.rows == cn && _param2.cols == cn;
|
|
scaleFunc = randnScaleTab[depth];
|
|
CV_Assert( scaleFunc != 0 );
|
|
}
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown distribution type" );
|
|
|
|
const Mat* arrays[] = {&mat, 0};
|
|
uchar* ptr;
|
|
NAryMatIterator it(arrays, &ptr);
|
|
int total = (int)it.size, blockSize = std::min((BLOCK_SIZE + cn - 1)/cn, total);
|
|
size_t esz = mat.elemSize();
|
|
AutoBuffer<double> buf;
|
|
uchar* param = 0;
|
|
float* nbuf = 0;
|
|
|
|
if( disttype == UNIFORM )
|
|
{
|
|
buf.allocate(blockSize*cn*4);
|
|
param = (uchar*)(double*)buf;
|
|
|
|
if( ip )
|
|
{
|
|
if( ds )
|
|
{
|
|
DivStruct* p = (DivStruct*)param;
|
|
for( j = 0; j < blockSize*cn; j += cn )
|
|
for( k = 0; k < cn; k++ )
|
|
p[j + k] = ds[k];
|
|
}
|
|
else
|
|
{
|
|
Vec2i* p = (Vec2i*)param;
|
|
for( j = 0; j < blockSize*cn; j += cn )
|
|
for( k = 0; k < cn; k++ )
|
|
p[j + k] = ip[k];
|
|
}
|
|
}
|
|
else if( fp )
|
|
{
|
|
Vec2f* p = (Vec2f*)param;
|
|
for( j = 0; j < blockSize*cn; j += cn )
|
|
for( k = 0; k < cn; k++ )
|
|
p[j + k] = fp[k];
|
|
}
|
|
else
|
|
{
|
|
Vec2d* p = (Vec2d*)param;
|
|
for( j = 0; j < blockSize*cn; j += cn )
|
|
for( k = 0; k < cn; k++ )
|
|
p[j + k] = dp[k];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
buf.allocate((blockSize*cn+1)/2);
|
|
nbuf = (float*)(double*)buf;
|
|
}
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( j = 0; j < total; j += blockSize )
|
|
{
|
|
int len = std::min(total - j, blockSize);
|
|
|
|
if( disttype == CV_RAND_UNI )
|
|
func( ptr, len*cn, &state, param, smallFlag != 0 );
|
|
else
|
|
{
|
|
randn_0_1_32f(nbuf, len*cn, &state);
|
|
scaleFunc(nbuf, ptr, len, cn, mean, stddev, stdmtx);
|
|
}
|
|
ptr += len*esz;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef WIN32
|
|
#ifdef WINCE
|
|
# define TLS_OUT_OF_INDEXES ((DWORD)0xFFFFFFFF)
|
|
#endif
|
|
static DWORD tlsRNGKey = TLS_OUT_OF_INDEXES;
|
|
|
|
void deleteThreadRNGData()
|
|
{
|
|
if( tlsRNGKey != TLS_OUT_OF_INDEXES )
|
|
delete (RNG*)TlsGetValue( tlsRNGKey );
|
|
}
|
|
|
|
RNG& theRNG()
|
|
{
|
|
if( tlsRNGKey == TLS_OUT_OF_INDEXES )
|
|
{
|
|
tlsRNGKey = TlsAlloc();
|
|
CV_Assert(tlsRNGKey != TLS_OUT_OF_INDEXES);
|
|
}
|
|
RNG* rng = (RNG*)TlsGetValue( tlsRNGKey );
|
|
if( !rng )
|
|
{
|
|
rng = new RNG;
|
|
TlsSetValue( tlsRNGKey, rng );
|
|
}
|
|
return *rng;
|
|
}
|
|
|
|
#else
|
|
|
|
static pthread_key_t tlsRNGKey = 0;
|
|
static pthread_once_t tlsRNGKeyOnce = PTHREAD_ONCE_INIT;
|
|
|
|
static void deleteRNG(void* data)
|
|
{
|
|
delete (RNG*)data;
|
|
}
|
|
|
|
static void makeRNGKey()
|
|
{
|
|
int errcode = pthread_key_create(&tlsRNGKey, deleteRNG);
|
|
CV_Assert(errcode == 0);
|
|
}
|
|
|
|
RNG& theRNG()
|
|
{
|
|
pthread_once(&tlsRNGKeyOnce, makeRNGKey);
|
|
RNG* rng = (RNG*)pthread_getspecific(tlsRNGKey);
|
|
if( !rng )
|
|
{
|
|
rng = new RNG;
|
|
pthread_setspecific(tlsRNGKey, rng);
|
|
}
|
|
return *rng;
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
void cv::randu(InputOutputArray dst, InputArray low, InputArray high)
|
|
{
|
|
theRNG().fill(dst, RNG::UNIFORM, low, high);
|
|
}
|
|
|
|
void cv::randn(InputOutputArray dst, InputArray mean, InputArray stddev)
|
|
{
|
|
theRNG().fill(dst, RNG::NORMAL, mean, stddev);
|
|
}
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<typename T> static void
|
|
randShuffle_( Mat& _arr, RNG& rng, double iterFactor )
|
|
{
|
|
int sz = _arr.rows*_arr.cols, iters = cvRound(iterFactor*sz);
|
|
if( _arr.isContinuous() )
|
|
{
|
|
T* arr = (T*)_arr.data;
|
|
for( int i = 0; i < iters; i++ )
|
|
{
|
|
int j = (unsigned)rng % sz, k = (unsigned)rng % sz;
|
|
std::swap( arr[j], arr[k] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
uchar* data = _arr.data;
|
|
size_t step = _arr.step;
|
|
int cols = _arr.cols;
|
|
for( int i = 0; i < iters; i++ )
|
|
{
|
|
int j1 = (unsigned)rng % sz, k1 = (unsigned)rng % sz;
|
|
int j0 = j1/cols, k0 = k1/cols;
|
|
j1 -= j0*cols; k1 -= k0*cols;
|
|
std::swap( ((T*)(data + step*j0))[j1], ((T*)(data + step*k0))[k1] );
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef void (*RandShuffleFunc)( Mat& dst, RNG& rng, double iterFactor );
|
|
|
|
}
|
|
|
|
void cv::randShuffle( InputOutputArray _dst, double iterFactor, RNG* _rng )
|
|
{
|
|
RandShuffleFunc tab[] =
|
|
{
|
|
0,
|
|
randShuffle_<uchar>, // 1
|
|
randShuffle_<ushort>, // 2
|
|
randShuffle_<Vec<uchar,3> >, // 3
|
|
randShuffle_<int>, // 4
|
|
0,
|
|
randShuffle_<Vec<ushort,3> >, // 6
|
|
0,
|
|
randShuffle_<Vec<int,2> >, // 8
|
|
0, 0, 0,
|
|
randShuffle_<Vec<int,3> >, // 12
|
|
0, 0, 0,
|
|
randShuffle_<Vec<int,4> >, // 16
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
randShuffle_<Vec<int,6> >, // 24
|
|
0, 0, 0, 0, 0, 0, 0,
|
|
randShuffle_<Vec<int,8> > // 32
|
|
};
|
|
|
|
Mat dst = _dst.getMat();
|
|
RNG& rng = _rng ? *_rng : theRNG();
|
|
CV_Assert( dst.elemSize() <= 32 );
|
|
RandShuffleFunc func = tab[dst.elemSize()];
|
|
CV_Assert( func != 0 );
|
|
func( dst, rng, iterFactor );
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvRandArr( CvRNG* _rng, CvArr* arr, int disttype, CvScalar param1, CvScalar param2 )
|
|
{
|
|
cv::Mat mat = cv::cvarrToMat(arr);
|
|
// !!! this will only work for current 64-bit MWC RNG !!!
|
|
cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG();
|
|
rng.fill(mat, disttype == CV_RAND_NORMAL ?
|
|
cv::RNG::NORMAL : cv::RNG::UNIFORM, (cv::Scalar&)param1, (cv::Scalar&)param2 );
|
|
}
|
|
|
|
CV_IMPL void cvRandShuffle( CvArr* arr, CvRNG* _rng, double iter_factor )
|
|
{
|
|
cv::Mat dst = cv::cvarrToMat(arr);
|
|
cv::RNG& rng = _rng ? (cv::RNG&)*_rng : cv::theRNG();
|
|
cv::randShuffle( dst, iter_factor, &rng );
|
|
}
|
|
|
|
/* End of file. */
|