1315 lines
52 KiB
C++
1315 lines
52 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace std;
|
|
|
|
#if !defined (HAVE_CUDA)
|
|
|
|
void cv::gpu::add(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::add(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::subtract(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::subtract(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::multiply(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::multiply(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::divide(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::divide(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::transpose(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::absdiff(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::absdiff(const GpuMat&, const Scalar&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::compare(const GpuMat&, const GpuMat&, GpuMat&, int) { throw_nogpu(); }
|
|
void cv::gpu::meanStdDev(const GpuMat&, Scalar&, Scalar&) { throw_nogpu(); }
|
|
double cv::gpu::norm(const GpuMat&, int) { throw_nogpu(); return 0.0; }
|
|
double cv::gpu::norm(const GpuMat&, const GpuMat&, int) { throw_nogpu(); return 0.0; }
|
|
void cv::gpu::flip(const GpuMat&, GpuMat&, int) { throw_nogpu(); }
|
|
Scalar cv::gpu::sum(const GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
Scalar cv::gpu::sum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
Scalar cv::gpu::sqrSum(const GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
Scalar cv::gpu::sqrSum(const GpuMat&, GpuMat&) { throw_nogpu(); return Scalar(); }
|
|
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::minMax(const GpuMat&, double*, double*, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::minMaxLoc(const GpuMat&, double*, double*, Point*, Point*, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
int cv::gpu::countNonZero(const GpuMat&) { throw_nogpu(); return 0; }
|
|
int cv::gpu::countNonZero(const GpuMat&, GpuMat&) { throw_nogpu(); return 0; }
|
|
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::exp(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::log(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::magnitude(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::magnitudeSqr(const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool) { throw_nogpu(); }
|
|
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
|
|
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool) { throw_nogpu(); }
|
|
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_not(const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_or(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, const Stream&) { throw_nogpu(); }
|
|
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat&) { throw_nogpu(); return GpuMat(); }
|
|
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
|
|
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
|
|
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat&, const GpuMat&) { throw_nogpu(); return GpuMat(); }
|
|
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, double, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::min(const GpuMat&, double, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, const GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, const GpuMat&, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, double, GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::max(const GpuMat&, double, GpuMat&, const Stream&) { throw_nogpu(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// add subtract multiply divide
|
|
|
|
namespace
|
|
{
|
|
typedef NppStatus (*npp_arithm_8u_t)(const Npp8u* pSrc1, int nSrc1Step, const Npp8u* pSrc2, int nSrc2Step, Npp8u* pDst, int nDstStep,
|
|
NppiSize oSizeROI, int nScaleFactor);
|
|
typedef NppStatus (*npp_arithm_32s_t)(const Npp32s* pSrc1, int nSrc1Step, const Npp32s* pSrc2, int nSrc2Step, Npp32s* pDst,
|
|
int nDstStep, NppiSize oSizeROI);
|
|
typedef NppStatus (*npp_arithm_32f_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst,
|
|
int nDstStep, NppiSize oSizeROI);
|
|
|
|
void nppArithmCaller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst,
|
|
npp_arithm_8u_t npp_func_8uc1, npp_arithm_8u_t npp_func_8uc4,
|
|
npp_arithm_32s_t npp_func_32sc1, npp_arithm_32f_t npp_func_32fc1)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
|
|
|
|
dst.create( src1.size(), src1.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
switch (src1.type())
|
|
{
|
|
case CV_8UC1:
|
|
nppSafeCall( npp_func_8uc1(src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz, 0) );
|
|
break;
|
|
case CV_8UC4:
|
|
nppSafeCall( npp_func_8uc4(src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz, 0) );
|
|
break;
|
|
case CV_32SC1:
|
|
nppSafeCall( npp_func_32sc1(src1.ptr<Npp32s>(), src1.step,
|
|
src2.ptr<Npp32s>(), src2.step,
|
|
dst.ptr<Npp32s>(), dst.step, sz) );
|
|
break;
|
|
case CV_32FC1:
|
|
nppSafeCall( npp_func_32fc1(src1.ptr<Npp32f>(), src1.step,
|
|
src2.ptr<Npp32f>(), src2.step,
|
|
dst.ptr<Npp32f>(), dst.step, sz) );
|
|
break;
|
|
default:
|
|
CV_Assert(!"Unsupported source type");
|
|
}
|
|
}
|
|
|
|
template<int SCN> struct NppArithmScalarFunc;
|
|
template<> struct NppArithmScalarFunc<1>
|
|
{
|
|
typedef NppStatus (*func_ptr)(const Npp32f *pSrc, int nSrcStep, Npp32f nValue, Npp32f *pDst,
|
|
int nDstStep, NppiSize oSizeROI);
|
|
};
|
|
template<> struct NppArithmScalarFunc<2>
|
|
{
|
|
typedef NppStatus (*func_ptr)(const Npp32fc *pSrc, int nSrcStep, Npp32fc nValue, Npp32fc *pDst,
|
|
int nDstStep, NppiSize oSizeROI);
|
|
};
|
|
|
|
template<int SCN, typename NppArithmScalarFunc<SCN>::func_ptr func> struct NppArithmScalar;
|
|
template<typename NppArithmScalarFunc<1>::func_ptr func> struct NppArithmScalar<1, func>
|
|
{
|
|
static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( func(src.ptr<Npp32f>(), src.step, (Npp32f)sc[0], dst.ptr<Npp32f>(), dst.step, sz) );
|
|
}
|
|
};
|
|
template<typename NppArithmScalarFunc<2>::func_ptr func> struct NppArithmScalar<2, func>
|
|
{
|
|
static void calc(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
Npp32fc nValue;
|
|
nValue.re = (Npp32f)sc[0];
|
|
nValue.im = (Npp32f)sc[1];
|
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, nValue, dst.ptr<Npp32fc>(), dst.step, sz) );
|
|
}
|
|
};
|
|
}
|
|
|
|
void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src1, src2, dst, nppiAdd_8u_C1RSfs, nppiAdd_8u_C4RSfs, nppiAdd_32s_C1R, nppiAdd_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src2, src1, dst, nppiSub_8u_C1RSfs, nppiSub_8u_C4RSfs, nppiSub_32s_C1R, nppiSub_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src1, src2, dst, nppiMul_8u_C1RSfs, nppiMul_8u_C4RSfs, nppiMul_32s_C1R, nppiMul_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
nppArithmCaller(src2, src1, dst, nppiDiv_8u_C1RSfs, nppiDiv_8u_C4RSfs, nppiDiv_32s_C1R, nppiDiv_32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiAddC_32f_C1R>::calc, NppArithmScalar<2, nppiAddC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiSubC_32f_C1R>::calc, NppArithmScalar<2, nppiSubC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiMulC_32f_C1R>::calc, NppArithmScalar<2, nppiMulC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst)
|
|
{
|
|
typedef void (*caller_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst);
|
|
static const caller_t callers[] = {0, NppArithmScalar<1, nppiDivC_32f_C1R>::calc, NppArithmScalar<2, nppiDivC_32fc_C1R>::calc};
|
|
|
|
CV_Assert(src.type() == CV_32FC1 || src.type() == CV_32FC2);
|
|
|
|
callers[src.channels()](src, sc, dst);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// transpose
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void transpose_gpu(const DevMem2Di& src, const DevMem2Di& dst);
|
|
}}}
|
|
|
|
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8SC1 || src.type() == CV_8UC4 || src.type() == CV_8SC4
|
|
|| src.type() == CV_16UC2 || src.type() == CV_16SC2 || src.type() == CV_32SC1 || src.type() == CV_32FC1);
|
|
|
|
dst.create( src.cols, src.rows, src.type() );
|
|
|
|
if (src.type() == CV_8UC1 || src.type() == CV_8SC1)
|
|
{
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz) );
|
|
}
|
|
else
|
|
{
|
|
mathfunc::transpose_gpu(src, dst);
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// absdiff
|
|
|
|
void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC1 || src1.type() == CV_8UC4 || src1.type() == CV_32SC1 || src1.type() == CV_32FC1);
|
|
|
|
dst.create( src1.size(), src1.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
switch (src1.type())
|
|
{
|
|
case CV_8UC1:
|
|
nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz) );
|
|
break;
|
|
case CV_8UC4:
|
|
nppSafeCall( nppiAbsDiff_8u_C4R(src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz) );
|
|
break;
|
|
case CV_32SC1:
|
|
nppSafeCall( nppiAbsDiff_32s_C1R(src1.ptr<Npp32s>(), src1.step,
|
|
src2.ptr<Npp32s>(), src2.step,
|
|
dst.ptr<Npp32s>(), dst.step, sz) );
|
|
break;
|
|
case CV_32FC1:
|
|
nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr<Npp32f>(), src1.step,
|
|
src2.ptr<Npp32f>(), src2.step,
|
|
dst.ptr<Npp32f>(), dst.step, sz) );
|
|
break;
|
|
default:
|
|
CV_Assert(!"Unsupported source type");
|
|
}
|
|
}
|
|
|
|
void cv::gpu::absdiff(const GpuMat& src, const Scalar& s, GpuMat& dst)
|
|
{
|
|
CV_Assert(src.type() == CV_32FC1);
|
|
|
|
dst.create( src.size(), src.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiAbsDiffC_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz, (Npp32f)s[0]) );
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// compare
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void compare_ne_8uc4(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
|
|
void compare_ne_32f(const DevMem2D& src1, const DevMem2D& src2, const DevMem2D& dst);
|
|
}}}
|
|
|
|
void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int cmpop)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC4 || src1.type() == CV_32FC1);
|
|
|
|
dst.create( src1.size(), CV_8UC1 );
|
|
|
|
static const NppCmpOp nppCmpOp[] = { NPP_CMP_EQ, NPP_CMP_GREATER, NPP_CMP_GREATER_EQ, NPP_CMP_LESS, NPP_CMP_LESS_EQ };
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
if (src1.type() == CV_8UC4)
|
|
{
|
|
if (cmpop != CMP_NE)
|
|
{
|
|
nppSafeCall( nppiCompare_8u_C4R(src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
|
|
}
|
|
else
|
|
{
|
|
mathfunc::compare_ne_8uc4(src1, src2, dst);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cmpop != CMP_NE)
|
|
{
|
|
nppSafeCall( nppiCompare_32f_C1R(src1.ptr<Npp32f>(), src1.step,
|
|
src2.ptr<Npp32f>(), src2.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz, nppCmpOp[cmpop]) );
|
|
}
|
|
else
|
|
{
|
|
mathfunc::compare_ne_32f(src1, src2, dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// meanStdDev
|
|
|
|
void cv::gpu::meanStdDev(const GpuMat& src, Scalar& mean, Scalar& stddev)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiMean_StdDev_8u_C1R(src.ptr<Npp8u>(), src.step, sz, mean.val, stddev.val) );
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// norm
|
|
|
|
double cv::gpu::norm(const GpuMat& src1, int normType)
|
|
{
|
|
return norm(src1, GpuMat(src1.size(), src1.type(), Scalar::all(0.0)), normType);
|
|
}
|
|
|
|
double cv::gpu::norm(const GpuMat& src1, const GpuMat& src2, int normType)
|
|
{
|
|
CV_DbgAssert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
|
|
CV_Assert(src1.type() == CV_8UC1);
|
|
CV_Assert(normType == NORM_INF || normType == NORM_L1 || normType == NORM_L2);
|
|
|
|
typedef NppStatus (*npp_norm_diff_func_t)(const Npp8u* pSrc1, int nSrcStep1, const Npp8u* pSrc2, int nSrcStep2,
|
|
NppiSize oSizeROI, Npp64f* pRetVal);
|
|
|
|
static const npp_norm_diff_func_t npp_norm_diff_func[] = {nppiNormDiff_Inf_8u_C1R, nppiNormDiff_L1_8u_C1R, nppiNormDiff_L2_8u_C1R};
|
|
|
|
NppiSize sz;
|
|
sz.width = src1.cols;
|
|
sz.height = src1.rows;
|
|
|
|
int funcIdx = normType >> 1;
|
|
double retVal;
|
|
|
|
nppSafeCall( npp_norm_diff_func[funcIdx](src1.ptr<Npp8u>(), src1.step,
|
|
src2.ptr<Npp8u>(), src2.step,
|
|
sz, &retVal) );
|
|
|
|
return retVal;
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// flip
|
|
|
|
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode)
|
|
{
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC4);
|
|
|
|
dst.create( src.size(), src.type() );
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
if (src.type() == CV_8UC1)
|
|
{
|
|
nppSafeCall( nppiMirror_8u_C1R(src.ptr<Npp8u>(), src.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz,
|
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
|
|
}
|
|
else
|
|
{
|
|
nppSafeCall( nppiMirror_8u_C4R(src.ptr<Npp8u>(), src.step,
|
|
dst.ptr<Npp8u>(), dst.step, sz,
|
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// sum
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
template <typename T>
|
|
void sum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
template <typename T>
|
|
void sum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
template <typename T>
|
|
void sqsum_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
template <typename T>
|
|
void sqsum_multipass_caller(const DevMem2D src, PtrStep buf, double* sum, int cn);
|
|
|
|
namespace sum
|
|
{
|
|
void get_buf_size_required(int cols, int rows, int cn, int& bufcols, int& bufrows);
|
|
}
|
|
}}}
|
|
|
|
Scalar cv::gpu::sum(const GpuMat& src)
|
|
{
|
|
GpuMat buf;
|
|
return sum(src, buf);
|
|
}
|
|
|
|
Scalar cv::gpu::sum(const GpuMat& src, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc;
|
|
|
|
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int);
|
|
static const Caller callers[2][7] =
|
|
{ { sum_multipass_caller<unsigned char>, sum_multipass_caller<char>,
|
|
sum_multipass_caller<unsigned short>, sum_multipass_caller<short>,
|
|
sum_multipass_caller<int>, sum_multipass_caller<float>, 0 },
|
|
{ sum_caller<unsigned char>, sum_caller<char>,
|
|
sum_caller<unsigned short>, sum_caller<short>,
|
|
sum_caller<int>, sum_caller<float>, 0 } };
|
|
|
|
Size bufSize;
|
|
sum::get_buf_size_required(src.cols, src.rows, src.channels(), bufSize.width, bufSize.height);
|
|
buf.create(bufSize, CV_8U);
|
|
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.depth()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "sum: unsupported type");
|
|
|
|
double result[4];
|
|
caller(src, buf, result, src.channels());
|
|
return Scalar(result[0], result[1], result[2], result[3]);
|
|
}
|
|
|
|
Scalar cv::gpu::sqrSum(const GpuMat& src)
|
|
{
|
|
GpuMat buf;
|
|
return sqrSum(src, buf);
|
|
}
|
|
|
|
Scalar cv::gpu::sqrSum(const GpuMat& src, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc;
|
|
|
|
typedef void (*Caller)(const DevMem2D, PtrStep, double*, int);
|
|
static const Caller callers[2][7] =
|
|
{ { sqsum_multipass_caller<unsigned char>, sqsum_multipass_caller<char>,
|
|
sqsum_multipass_caller<unsigned short>, sqsum_multipass_caller<short>,
|
|
sqsum_multipass_caller<int>, sqsum_multipass_caller<float>, 0 },
|
|
{ sqsum_caller<unsigned char>, sqsum_caller<char>,
|
|
sqsum_caller<unsigned short>, sqsum_caller<short>,
|
|
sqsum_caller<int>, sqsum_caller<float>, 0 } };
|
|
|
|
Size bufSize;
|
|
sum::get_buf_size_required(src.cols, src.rows, src.channels(), bufSize.width, bufSize.height);
|
|
buf.create(bufSize, CV_8U);
|
|
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.depth()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "sqrSum: unsupported type");
|
|
|
|
double result[4];
|
|
caller(src, buf, result, src.channels());
|
|
return Scalar(result[0], result[1], result[2], result[3]);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// minMax
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace minmax {
|
|
|
|
void get_buf_size_required(int cols, int rows, int elem_size, int& bufcols, int& bufrows);
|
|
|
|
template <typename T>
|
|
void min_max_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf);
|
|
|
|
template <typename T>
|
|
void min_max_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf);
|
|
|
|
template <typename T>
|
|
void min_max_multipass_caller(const DevMem2D src, double* minval, double* maxval, PtrStep buf);
|
|
|
|
template <typename T>
|
|
void min_max_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval, PtrStep buf);
|
|
|
|
}}}}
|
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask)
|
|
{
|
|
GpuMat buf;
|
|
minMax(src, minVal, maxVal, mask, buf);
|
|
}
|
|
|
|
void cv::gpu::minMax(const GpuMat& src, double* minVal, double* maxVal, const GpuMat& mask, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc::minmax;
|
|
|
|
typedef void (*Caller)(const DevMem2D, double*, double*, PtrStep);
|
|
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, PtrStep);
|
|
|
|
static const Caller callers[2][7] =
|
|
{ { min_max_multipass_caller<unsigned char>, min_max_multipass_caller<char>,
|
|
min_max_multipass_caller<unsigned short>, min_max_multipass_caller<short>,
|
|
min_max_multipass_caller<int>, min_max_multipass_caller<float>, 0 },
|
|
{ min_max_caller<unsigned char>, min_max_caller<char>,
|
|
min_max_caller<unsigned short>, min_max_caller<short>,
|
|
min_max_caller<int>, min_max_caller<float>, min_max_caller<double> } };
|
|
|
|
static const MaskedCaller masked_callers[2][7] =
|
|
{ { min_max_mask_multipass_caller<unsigned char>, min_max_mask_multipass_caller<char>,
|
|
min_max_mask_multipass_caller<unsigned short>, min_max_mask_multipass_caller<short>,
|
|
min_max_mask_multipass_caller<int>, min_max_mask_multipass_caller<float>, 0 },
|
|
{ min_max_mask_caller<unsigned char>, min_max_mask_caller<char>,
|
|
min_max_mask_caller<unsigned short>, min_max_mask_caller<short>,
|
|
min_max_mask_caller<int>, min_max_mask_caller<float>,
|
|
min_max_mask_caller<double> } };
|
|
|
|
|
|
CV_Assert(src.channels() == 1);
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
|
|
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice()));
|
|
|
|
double minVal_; if (!minVal) minVal = &minVal_;
|
|
double maxVal_; if (!maxVal) maxVal = &maxVal_;
|
|
|
|
Size bufSize;
|
|
get_buf_size_required(src.cols, src.rows, src.elemSize(), bufSize.width, bufSize.height);
|
|
buf.create(bufSize, CV_8U);
|
|
|
|
if (mask.empty())
|
|
{
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
|
|
caller(src, minVal, maxVal, buf);
|
|
}
|
|
else
|
|
{
|
|
MaskedCaller caller = masked_callers[hasAtomicsSupport(getDevice())][src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMax: unsupported type");
|
|
caller(src, mask, minVal, maxVal, buf);
|
|
}
|
|
}
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// minMaxLoc
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace minmaxloc {
|
|
|
|
void get_buf_size_required(int cols, int rows, int elem_size, int& b1cols,
|
|
int& b1rows, int& b2cols, int& b2rows);
|
|
|
|
template <typename T>
|
|
void min_max_loc_caller(const DevMem2D src, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
|
|
|
|
template <typename T>
|
|
void min_max_loc_mask_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
|
|
|
|
template <typename T>
|
|
void min_max_loc_multipass_caller(const DevMem2D src, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
|
|
|
|
template <typename T>
|
|
void min_max_loc_mask_multipass_caller(const DevMem2D src, const PtrStep mask, double* minval, double* maxval,
|
|
int minloc[2], int maxloc[2], PtrStep valbuf, PtrStep locbuf);
|
|
|
|
|
|
}}}}
|
|
|
|
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, const GpuMat& mask)
|
|
{
|
|
GpuMat valbuf, locbuf;
|
|
minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valbuf, locbuf);
|
|
}
|
|
|
|
void cv::gpu::minMaxLoc(const GpuMat& src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc,
|
|
const GpuMat& mask, GpuMat& valbuf, GpuMat& locbuf)
|
|
{
|
|
using namespace mathfunc::minmaxloc;
|
|
|
|
typedef void (*Caller)(const DevMem2D, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
typedef void (*MaskedCaller)(const DevMem2D, const PtrStep, double*, double*, int[2], int[2], PtrStep, PtrStep);
|
|
|
|
static const Caller callers[2][7] =
|
|
{ { min_max_loc_multipass_caller<unsigned char>, min_max_loc_multipass_caller<char>,
|
|
min_max_loc_multipass_caller<unsigned short>, min_max_loc_multipass_caller<short>,
|
|
min_max_loc_multipass_caller<int>, min_max_loc_multipass_caller<float>, 0 },
|
|
{ min_max_loc_caller<unsigned char>, min_max_loc_caller<char>,
|
|
min_max_loc_caller<unsigned short>, min_max_loc_caller<short>,
|
|
min_max_loc_caller<int>, min_max_loc_caller<float>, min_max_loc_caller<double> } };
|
|
|
|
static const MaskedCaller masked_callers[2][7] =
|
|
{ { min_max_loc_mask_multipass_caller<unsigned char>, min_max_loc_mask_multipass_caller<char>,
|
|
min_max_loc_mask_multipass_caller<unsigned short>, min_max_loc_mask_multipass_caller<short>,
|
|
min_max_loc_mask_multipass_caller<int>, min_max_loc_mask_multipass_caller<float>, 0 },
|
|
{ min_max_loc_mask_caller<unsigned char>, min_max_loc_mask_caller<char>,
|
|
min_max_loc_mask_caller<unsigned short>, min_max_loc_mask_caller<short>,
|
|
min_max_loc_mask_caller<int>, min_max_loc_mask_caller<float>, min_max_loc_mask_caller<double> } };
|
|
|
|
CV_Assert(src.channels() == 1);
|
|
CV_Assert(mask.empty() || (mask.type() == CV_8U && src.size() == mask.size()));
|
|
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice()));
|
|
|
|
double minVal_; if (!minVal) minVal = &minVal_;
|
|
double maxVal_; if (!maxVal) maxVal = &maxVal_;
|
|
int minLoc_[2];
|
|
int maxLoc_[2];
|
|
|
|
Size valbuf_size, locbuf_size;
|
|
get_buf_size_required(src.cols, src.rows, src.elemSize(), valbuf_size.width,
|
|
valbuf_size.height, locbuf_size.width, locbuf_size.height);
|
|
valbuf.create(valbuf_size, CV_8U);
|
|
locbuf.create(locbuf_size, CV_8U);
|
|
|
|
if (mask.empty())
|
|
{
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
|
|
caller(src, minVal, maxVal, minLoc_, maxLoc_, valbuf, locbuf);
|
|
}
|
|
else
|
|
{
|
|
MaskedCaller caller = masked_callers[hasAtomicsSupport(getDevice())][src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "minMaxLoc: unsupported type");
|
|
caller(src, mask, minVal, maxVal, minLoc_, maxLoc_, valbuf, locbuf);
|
|
}
|
|
|
|
if (minLoc) { minLoc->x = minLoc_[0]; minLoc->y = minLoc_[1]; }
|
|
if (maxLoc) { maxLoc->x = maxLoc_[0]; maxLoc->y = maxLoc_[1]; }
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Count non zero
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc { namespace countnonzero {
|
|
|
|
void get_buf_size_required(int cols, int rows, int& bufcols, int& bufrows);
|
|
|
|
template <typename T>
|
|
int count_non_zero_caller(const DevMem2D src, PtrStep buf);
|
|
|
|
template <typename T>
|
|
int count_non_zero_multipass_caller(const DevMem2D src, PtrStep buf);
|
|
|
|
}}}}
|
|
|
|
int cv::gpu::countNonZero(const GpuMat& src)
|
|
{
|
|
GpuMat buf;
|
|
return countNonZero(src, buf);
|
|
}
|
|
|
|
int cv::gpu::countNonZero(const GpuMat& src, GpuMat& buf)
|
|
{
|
|
using namespace mathfunc::countnonzero;
|
|
|
|
typedef int (*Caller)(const DevMem2D src, PtrStep buf);
|
|
|
|
static const Caller callers[2][7] =
|
|
{ { count_non_zero_multipass_caller<unsigned char>, count_non_zero_multipass_caller<char>,
|
|
count_non_zero_multipass_caller<unsigned short>, count_non_zero_multipass_caller<short>,
|
|
count_non_zero_multipass_caller<int>, count_non_zero_multipass_caller<float>, 0},
|
|
{ count_non_zero_caller<unsigned char>, count_non_zero_caller<char>,
|
|
count_non_zero_caller<unsigned short>, count_non_zero_caller<short>,
|
|
count_non_zero_caller<int>, count_non_zero_caller<float>, count_non_zero_caller<double> } };
|
|
|
|
CV_Assert(src.channels() == 1);
|
|
CV_Assert(src.type() != CV_64F || hasNativeDoubleSupport(getDevice()));
|
|
|
|
Size buf_size;
|
|
get_buf_size_required(src.cols, src.rows, buf_size.width, buf_size.height);
|
|
buf.create(buf_size, CV_8U);
|
|
|
|
Caller caller = callers[hasAtomicsSupport(getDevice())][src.type()];
|
|
if (!caller) CV_Error(CV_StsBadArg, "countNonZero: unsupported type");
|
|
return caller(src, buf);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// LUT
|
|
|
|
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst)
|
|
{
|
|
class LevelsInit
|
|
{
|
|
public:
|
|
Npp32s pLevels[256];
|
|
const Npp32s* pLevels3[3];
|
|
int nValues3[3];
|
|
|
|
LevelsInit()
|
|
{
|
|
nValues3[0] = nValues3[1] = nValues3[2] = 256;
|
|
for (int i = 0; i < 256; ++i)
|
|
pLevels[i] = i;
|
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
|
|
}
|
|
};
|
|
static LevelsInit lvls;
|
|
|
|
int cn = src.channels();
|
|
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
|
|
CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous());
|
|
|
|
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));
|
|
|
|
NppiSize sz;
|
|
sz.height = src.rows;
|
|
sz.width = src.cols;
|
|
|
|
Mat nppLut;
|
|
lut.convertTo(nppLut, CV_32S);
|
|
|
|
if (src.type() == CV_8UC1)
|
|
{
|
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz,
|
|
nppLut.ptr<Npp32s>(), lvls.pLevels, 256) );
|
|
}
|
|
else
|
|
{
|
|
Mat nppLut3[3];
|
|
const Npp32s* pValues3[3];
|
|
if (nppLut.channels() == 1)
|
|
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
|
|
else
|
|
{
|
|
cv::split(nppLut, nppLut3);
|
|
pValues3[0] = nppLut3[0].ptr<Npp32s>();
|
|
pValues3[1] = nppLut3[1].ptr<Npp32s>();
|
|
pValues3[2] = nppLut3[2].ptr<Npp32s>();
|
|
}
|
|
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), src.step, dst.ptr<Npp8u>(), dst.step, sz,
|
|
pValues3, lvls.pLevels3, lvls.nValues3) );
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// exp
|
|
|
|
void cv::gpu::exp(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
CV_Assert(src.type() == CV_32FC1);
|
|
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiExp_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// log
|
|
|
|
void cv::gpu::log(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
CV_Assert(src.type() == CV_32FC1);
|
|
|
|
dst.create(src.size(), src.type());
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiLn_32f_C1R(src.ptr<Npp32f>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// NPP magnitide
|
|
|
|
namespace
|
|
{
|
|
typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
|
|
|
|
inline void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func)
|
|
{
|
|
CV_Assert(src.type() == CV_32FC2);
|
|
|
|
dst.create(src.size(), CV_32FC1);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), src.step, dst.ptr<Npp32f>(), dst.step, sz) );
|
|
}
|
|
}
|
|
|
|
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
::npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R);
|
|
}
|
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst)
|
|
{
|
|
::npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Polar <-> Cart
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void cartToPolar_gpu(const DevMem2Df& x, const DevMem2Df& y, const DevMem2Df& mag, bool magSqr, const DevMem2Df& angle, bool angleInDegrees, cudaStream_t stream);
|
|
void polarToCart_gpu(const DevMem2Df& mag, const DevMem2Df& angle, const DevMem2Df& x, const DevMem2Df& y, bool angleInDegrees, cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
inline void cartToPolar_caller(const GpuMat& x, const GpuMat& y, GpuMat* mag, bool magSqr, GpuMat* angle, bool angleInDegrees, cudaStream_t stream)
|
|
{
|
|
CV_DbgAssert(x.size() == y.size() && x.type() == y.type());
|
|
CV_Assert(x.depth() == CV_32F);
|
|
|
|
if (mag)
|
|
mag->create(x.size(), x.type());
|
|
if (angle)
|
|
angle->create(x.size(), x.type());
|
|
|
|
GpuMat x1cn = x.reshape(1);
|
|
GpuMat y1cn = y.reshape(1);
|
|
GpuMat mag1cn = mag ? mag->reshape(1) : GpuMat();
|
|
GpuMat angle1cn = angle ? angle->reshape(1) : GpuMat();
|
|
|
|
mathfunc::cartToPolar_gpu(x1cn, y1cn, mag1cn, magSqr, angle1cn, angleInDegrees, stream);
|
|
}
|
|
|
|
inline void polarToCart_caller(const GpuMat& mag, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, cudaStream_t stream)
|
|
{
|
|
CV_DbgAssert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
|
|
CV_Assert(mag.depth() == CV_32F);
|
|
|
|
x.create(mag.size(), mag.type());
|
|
y.create(mag.size(), mag.type());
|
|
|
|
GpuMat mag1cn = mag.reshape(1);
|
|
GpuMat angle1cn = angle.reshape(1);
|
|
GpuMat x1cn = x.reshape(1);
|
|
GpuMat y1cn = y.reshape(1);
|
|
|
|
mathfunc::polarToCart_gpu(mag1cn, angle1cn, x1cn, y1cn, angleInDegrees, stream);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst)
|
|
{
|
|
::cartToPolar_caller(x, y, &dst, false, 0, false, 0);
|
|
}
|
|
|
|
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst, const Stream& stream)
|
|
{
|
|
::cartToPolar_caller(x, y, &dst, false, 0, false, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst)
|
|
{
|
|
::cartToPolar_caller(x, y, &dst, true, 0, false, 0);
|
|
}
|
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst, const Stream& stream)
|
|
{
|
|
::cartToPolar_caller(x, y, &dst, true, 0, false, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees)
|
|
{
|
|
::cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, 0);
|
|
}
|
|
|
|
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, const Stream& stream)
|
|
{
|
|
::cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees)
|
|
{
|
|
::cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, 0);
|
|
}
|
|
|
|
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees, const Stream& stream)
|
|
{
|
|
::cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees)
|
|
{
|
|
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, 0);
|
|
}
|
|
|
|
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, const Stream& stream)
|
|
{
|
|
::polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// Per-element bit-wise logical matrix operations
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
void bitwise_not_caller(int rows, int cols, const PtrStep src, int elemSize, PtrStep dst, cudaStream_t stream);
|
|
void bitwise_not_caller(int rows, int cols, const PtrStep src, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream);
|
|
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, cudaStream_t stream);
|
|
void bitwise_or_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream);
|
|
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, cudaStream_t stream);
|
|
void bitwise_and_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream);
|
|
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, cudaStream_t stream);
|
|
void bitwise_xor_caller(int rows, int cols, const PtrStep src1, const PtrStep src2, int elemSize, PtrStep dst, const PtrStep mask, cudaStream_t stream);
|
|
|
|
|
|
template <int opid, typename Mask>
|
|
void bitwise_bin_op(int rows, int cols, const PtrStep src1, const PtrStep src2, PtrStep dst, int elem_size, Mask mask, cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
void bitwise_not_caller(const GpuMat& src, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
dst.create(src.size(), src.type());
|
|
mathfunc::bitwise_not_caller(src.rows, src.cols, src, src.elemSize(), dst, stream);
|
|
}
|
|
|
|
void bitwise_not_caller(const GpuMat& src, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
CV_Assert(mask.type() == CV_8U && mask.size() == src.size());
|
|
dst.create(src.size(), src.type());
|
|
mathfunc::bitwise_not_caller(src.rows, src.cols, src, src.elemSize(), dst, mask, stream);
|
|
}
|
|
|
|
void bitwise_or_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::bitwise_or_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, stream);
|
|
}
|
|
|
|
void bitwise_or_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::bitwise_or_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, mask, stream);
|
|
}
|
|
|
|
void bitwise_and_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::bitwise_and_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, stream);
|
|
}
|
|
|
|
void bitwise_and_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::bitwise_and_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, mask, stream);
|
|
}
|
|
|
|
void bitwise_xor_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size());
|
|
CV_Assert(src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::bitwise_xor_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, stream);
|
|
}
|
|
|
|
void bitwise_xor_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
CV_Assert(mask.type() == CV_8U && mask.size() == src1.size());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::bitwise_xor_caller(dst.rows, dst.cols, src1, src2, dst.elemSize(), dst, mask, stream);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_not_caller(src, dst, 0);
|
|
else
|
|
::bitwise_not_caller(src, dst, mask, 0);
|
|
}
|
|
|
|
void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_not_caller(src, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwise_not_caller(src, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_or_caller(src1, src2, dst, 0);
|
|
else
|
|
::bitwise_or_caller(src1, src2, dst, mask, 0);
|
|
}
|
|
|
|
void cv::gpu::bitwise_or(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_or_caller(src1, src2, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwise_or_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_and_caller(src1, src2, dst, 0);
|
|
else
|
|
::bitwise_and_caller(src1, src2, dst, mask, 0);
|
|
}
|
|
|
|
void cv::gpu::bitwise_and(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_and_caller(src1, src2, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwise_and_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_xor_caller(src1, src2, dst, 0);
|
|
else
|
|
::bitwise_xor_caller(src1, src2, dst, mask, 0);
|
|
}
|
|
|
|
void cv::gpu::bitwise_xor(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const GpuMat& mask, const Stream& stream)
|
|
{
|
|
if (mask.empty())
|
|
::bitwise_xor_caller(src1, src2, dst, StreamAccessor::getStream(stream));
|
|
else
|
|
::bitwise_xor_caller(src1, src2, dst, mask, StreamAccessor::getStream(stream));
|
|
|
|
}
|
|
|
|
cv::gpu::GpuMat cv::gpu::operator ~ (const GpuMat& src)
|
|
{
|
|
GpuMat dst;
|
|
bitwise_not(src, dst);
|
|
return dst;
|
|
}
|
|
|
|
cv::gpu::GpuMat cv::gpu::operator | (const GpuMat& src1, const GpuMat& src2)
|
|
{
|
|
GpuMat dst;
|
|
bitwise_or(src1, src2, dst);
|
|
return dst;
|
|
}
|
|
|
|
cv::gpu::GpuMat cv::gpu::operator & (const GpuMat& src1, const GpuMat& src2)
|
|
{
|
|
GpuMat dst;
|
|
bitwise_and(src1, src2, dst);
|
|
return dst;
|
|
}
|
|
|
|
cv::gpu::GpuMat cv::gpu::operator ^ (const GpuMat& src1, const GpuMat& src2)
|
|
{
|
|
GpuMat dst;
|
|
bitwise_xor(src1, src2, dst);
|
|
return dst;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// min/max
|
|
|
|
namespace cv { namespace gpu { namespace mathfunc
|
|
{
|
|
template <typename T>
|
|
void min_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void max_gpu(const DevMem2D_<T>& src1, const DevMem2D_<T>& src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void min_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
|
|
template <typename T>
|
|
void max_gpu(const DevMem2D_<T>& src1, double src2, const DevMem2D_<T>& dst, cudaStream_t stream);
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
template <typename T>
|
|
void min_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::min_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
|
}
|
|
|
|
template <typename T>
|
|
void min_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::min_gpu<T>(src1.reshape(1), src2, dst.reshape(1), stream);
|
|
}
|
|
|
|
template <typename T>
|
|
void max_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src1.size() == src2.size() && src1.type() == src2.type());
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::max_gpu<T>(src1.reshape(1), src2.reshape(1), dst.reshape(1), stream);
|
|
}
|
|
|
|
template <typename T>
|
|
void max_caller(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream)
|
|
{
|
|
dst.create(src1.size(), src1.type());
|
|
mathfunc::max_gpu<T>(src1.reshape(1), src2, dst.reshape(1), stream);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
min_caller<uchar>, min_caller<char>, min_caller<ushort>, min_caller<short>, min_caller<int>,
|
|
min_caller<float>, min_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, 0);
|
|
}
|
|
|
|
void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, const Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream);
|
|
static const func_t funcs[] =
|
|
{
|
|
max_caller<uchar>, max_caller<char>, max_caller<ushort>, max_caller<short>, max_caller<int>,
|
|
max_caller<float>, max_caller<double>
|
|
};
|
|
funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|