104 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			104 lines
		
	
	
		
			3.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                           License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
 | 
						|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// @Authors
 | 
						|
//    Fangfang Bai, fangfang@multicorewareinc.com
 | 
						|
//    Jin Ma,       jin@multicorewareinc.com
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors as is and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "perf_precomp.hpp"
 | 
						|
 | 
						|
#ifdef HAVE_CLAMDBLAS
 | 
						|
 | 
						|
using namespace perf;
 | 
						|
using namespace std;
 | 
						|
using namespace cv::ocl;
 | 
						|
using namespace cv;
 | 
						|
using std::tr1::tuple;
 | 
						|
using std::tr1::get;
 | 
						|
 | 
						|
///////////// Kalman Filter ////////////////////////
 | 
						|
 | 
						|
typedef tuple<int> KalmanFilterType;
 | 
						|
typedef TestBaseWithParam<KalmanFilterType> KalmanFilterFixture;
 | 
						|
 | 
						|
PERF_TEST_P(KalmanFilterFixture, KalmanFilter,
 | 
						|
    ::testing::Values(1000, 1500))
 | 
						|
{
 | 
						|
    KalmanFilterType params = GetParam();
 | 
						|
    const int dim = get<0>(params);
 | 
						|
 | 
						|
    cv::Mat sample(dim, 1, CV_32FC1), dresult;
 | 
						|
    randu(sample, -1, 1);
 | 
						|
 | 
						|
    cv::Mat statePre_;
 | 
						|
 | 
						|
    if (RUN_PLAIN_IMPL)
 | 
						|
    {
 | 
						|
        cv::KalmanFilter kalman;
 | 
						|
        TEST_CYCLE()
 | 
						|
        {
 | 
						|
            kalman.init(dim, dim);
 | 
						|
            kalman.correct(sample);
 | 
						|
            kalman.predict();
 | 
						|
        }
 | 
						|
        statePre_ = kalman.statePre;
 | 
						|
    }
 | 
						|
    else if(RUN_OCL_IMPL)
 | 
						|
    {
 | 
						|
        cv::ocl::oclMat dsample(sample);
 | 
						|
        cv::ocl::KalmanFilter kalman_ocl;
 | 
						|
        OCL_TEST_CYCLE()
 | 
						|
        {
 | 
						|
            kalman_ocl.init(dim, dim);
 | 
						|
            kalman_ocl.correct(dsample);
 | 
						|
            kalman_ocl.predict();
 | 
						|
        }
 | 
						|
        kalman_ocl.statePre.download(statePre_);
 | 
						|
    }
 | 
						|
    else
 | 
						|
        OCL_PERF_ELSE
 | 
						|
 | 
						|
    SANITY_CHECK(statePre_);
 | 
						|
}
 | 
						|
 | 
						|
#endif // HAVE_CLAMDBLAS
 |