316 lines
12 KiB
ReStructuredText
316 lines
12 KiB
ReStructuredText
Expectation-Maximization
|
|
========================
|
|
|
|
.. highlight:: cpp
|
|
|
|
The EM (Expectation-Maximization) algorithm estimates the parameters of the multivariate probability density function in the form of a Gaussian mixture distribution with a specified number of mixtures.
|
|
|
|
Consider the set of the feature vectors
|
|
:math:`x_1, x_2,...,x_{N}` : N vectors from a d-dimensional Euclidean space drawn from a Gaussian mixture:
|
|
|
|
.. math::
|
|
|
|
p(x;a_k,S_k, \pi _k) = \sum _{k=1}^{m} \pi _kp_k(x), \quad \pi _k \geq 0, \quad \sum _{k=1}^{m} \pi _k=1,
|
|
|
|
.. math::
|
|
|
|
p_k(x)= \varphi (x;a_k,S_k)= \frac{1}{(2\pi)^{d/2}\mid{S_k}\mid^{1/2}} exp \left \{ - \frac{1}{2} (x-a_k)^TS_k^{-1}(x-a_k) \right \} ,
|
|
|
|
where
|
|
:math:`m` is the number of mixtures,
|
|
:math:`p_k` is the normal distribution
|
|
density with the mean
|
|
:math:`a_k` and covariance matrix
|
|
:math:`S_k`,:math:`\pi_k` is the weight of the k-th mixture. Given the number of mixtures
|
|
:math:`M` and the samples
|
|
:math:`x_i`,:math:`i=1..N` the algorithm finds the
|
|
maximum-likelihood estimates (MLE) of the all the mixture parameters,
|
|
i.e.
|
|
:math:`a_k`,:math:`S_k` and
|
|
:math:`\pi_k` :
|
|
|
|
.. math::
|
|
|
|
L(x, \theta )=logp(x, \theta )= \sum _{i=1}^{N}log \left ( \sum _{k=1}^{m} \pi _kp_k(x) \right ) \to \max _{ \theta \in \Theta },
|
|
|
|
.. math::
|
|
|
|
\Theta = \left \{ (a_k,S_k, \pi _k): a_k \in \mathbbm{R} ^d,S_k=S_k^T>0,S_k \in \mathbbm{R} ^{d \times d}, \pi _k \geq 0, \sum _{k=1}^{m} \pi _k=1 \right \} .
|
|
|
|
EM algorithm is an iterative procedure. Each iteration of it includes
|
|
two steps. At the first step (Expectation-step, or E-step), we find a
|
|
probability
|
|
:math:`p_{i,k}` (denoted
|
|
:math:`\alpha_{i,k}` in the formula below) of
|
|
sample ``i`` to belong to mixture ``k`` using the currently
|
|
available mixture parameter estimates:
|
|
|
|
.. math::
|
|
|
|
\alpha _{ki} = \frac{\pi_k\varphi(x;a_k,S_k)}{\sum\limits_{j=1}^{m}\pi_j\varphi(x;a_j,S_j)} .
|
|
|
|
At the second step (Maximization-step, or M-step) the mixture parameter estimates are refined using the computed probabilities:
|
|
|
|
.. math::
|
|
|
|
\pi _k= \frac{1}{N} \sum _{i=1}^{N} \alpha _{ki}, \quad a_k= \frac{\sum\limits_{i=1}^{N}\alpha_{ki}x_i}{\sum\limits_{i=1}^{N}\alpha_{ki}} , \quad S_k= \frac{\sum\limits_{i=1}^{N}\alpha_{ki}(x_i-a_k)(x_i-a_k)^T}{\sum\limits_{i=1}^{N}\alpha_{ki}} ,
|
|
|
|
Alternatively, the algorithm may start with the M-step when the initial values for
|
|
:math:`p_{i,k}` can be provided. Another alternative when
|
|
:math:`p_{i,k}` are unknown, is to use a simpler clustering algorithm to pre-cluster the input samples and thus obtain initial
|
|
:math:`p_{i,k}` . Often (and in ML) the
|
|
:ref:`KMeans2` algorithm is used for that purpose.
|
|
|
|
One of the main that EM algorithm should deal with is the large number
|
|
of parameters to estimate. The majority of the parameters sits in
|
|
covariance matrices, which are
|
|
:math:`d \times d` elements each
|
|
(where
|
|
:math:`d` is the feature space dimensionality). However, in
|
|
many practical problems the covariance matrices are close to diagonal,
|
|
or even to
|
|
:math:`\mu_k*I` , where
|
|
:math:`I` is identity matrix and
|
|
:math:`\mu_k` is mixture-dependent "scale" parameter. So a robust computation
|
|
scheme could be to start with the harder constraints on the covariance
|
|
matrices and then use the estimated parameters as an input for a less
|
|
constrained optimization problem (often a diagonal covariance matrix is
|
|
already a good enough approximation).
|
|
|
|
**References:**
|
|
|
|
*
|
|
Bilmes98 J. A. Bilmes. A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models. Technical Report TR-97-021, International Computer Science Institute and Computer Science Division, University of California at Berkeley, April 1998.
|
|
|
|
.. index:: CvEMParams
|
|
|
|
.. _CvEMParams:
|
|
|
|
CvEMParams
|
|
----------
|
|
.. c:type:: CvEMParams
|
|
|
|
Parameters of the EM algorithm. ::
|
|
|
|
struct CvEMParams
|
|
{
|
|
CvEMParams() : nclusters(10), cov_mat_type(CvEM::COV_MAT_DIAGONAL),
|
|
start_step(CvEM::START_AUTO_STEP), probs(0), weights(0), means(0),
|
|
covs(0)
|
|
{
|
|
term_crit=cvTermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
|
|
100, FLT_EPSILON );
|
|
}
|
|
|
|
CvEMParams( int _nclusters, int _cov_mat_type=1/*CvEM::COV_MAT_DIAGONAL*/,
|
|
int _start_step=0/*CvEM::START_AUTO_STEP*/,
|
|
CvTermCriteria _term_crit=cvTermCriteria(
|
|
CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,
|
|
100, FLT_EPSILON),
|
|
CvMat* _probs=0, CvMat* _weights=0,
|
|
CvMat* _means=0, CvMat** _covs=0 ) :
|
|
nclusters(_nclusters), cov_mat_type(_cov_mat_type),
|
|
start_step(_start_step),
|
|
probs(_probs), weights(_weights), means(_means), covs(_covs),
|
|
term_crit(_term_crit)
|
|
{}
|
|
|
|
int nclusters;
|
|
int cov_mat_type;
|
|
int start_step;
|
|
const CvMat* probs;
|
|
const CvMat* weights;
|
|
const CvMat* means;
|
|
const CvMat** covs;
|
|
CvTermCriteria term_crit;
|
|
};
|
|
..
|
|
|
|
The structure has 2 constructors, the default one represents a rough rule-of-thumb, with another one it is possible to override a variety of parameters, from a single number of mixtures (the only essential problem-dependent parameter), to the initial values for the mixture parameters.
|
|
|
|
.. index:: CvEM
|
|
|
|
.. _CvEM:
|
|
|
|
CvEM
|
|
----
|
|
.. c:type:: CvEM
|
|
|
|
EM model. ::
|
|
|
|
class CV_EXPORTS CvEM : public CvStatModel
|
|
{
|
|
public:
|
|
// Type of covariance matrices
|
|
enum { COV_MAT_SPHERICAL=0, COV_MAT_DIAGONAL=1, COV_MAT_GENERIC=2 };
|
|
|
|
// The initial step
|
|
enum { START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0 };
|
|
|
|
CvEM();
|
|
CvEM( const CvMat* samples, const CvMat* sample_idx=0,
|
|
CvEMParams params=CvEMParams(), CvMat* labels=0 );
|
|
virtual ~CvEM();
|
|
|
|
virtual bool train( const CvMat* samples, const CvMat* sample_idx=0,
|
|
CvEMParams params=CvEMParams(), CvMat* labels=0 );
|
|
|
|
virtual float predict( const CvMat* sample, CvMat* probs ) const;
|
|
virtual void clear();
|
|
|
|
int get_nclusters() const { return params.nclusters; }
|
|
const CvMat* get_means() const { return means; }
|
|
const CvMat** get_covs() const { return covs; }
|
|
const CvMat* get_weights() const { return weights; }
|
|
const CvMat* get_probs() const { return probs; }
|
|
|
|
protected:
|
|
|
|
virtual void set_params( const CvEMParams& params,
|
|
const CvVectors& train_data );
|
|
virtual void init_em( const CvVectors& train_data );
|
|
virtual double run_em( const CvVectors& train_data );
|
|
virtual void init_auto( const CvVectors& samples );
|
|
virtual void kmeans( const CvVectors& train_data, int nclusters,
|
|
CvMat* labels, CvTermCriteria criteria,
|
|
const CvMat* means );
|
|
CvEMParams params;
|
|
double log_likelihood;
|
|
|
|
CvMat* means;
|
|
CvMat** covs;
|
|
CvMat* weights;
|
|
CvMat* probs;
|
|
|
|
CvMat* log_weight_div_det;
|
|
CvMat* inv_eigen_values;
|
|
CvMat** cov_rotate_mats;
|
|
};
|
|
..
|
|
|
|
.. index:: CvEM::train
|
|
|
|
.. _CvEM::train:
|
|
|
|
CvEM::train
|
|
-----------
|
|
.. c:function:: void CvEM::train( const CvMat* samples, const CvMat* sample_idx=0, CvEMParams params=CvEMParams(), CvMat* labels=0 )
|
|
|
|
Estimates the Gaussian mixture parameters from the sample set.
|
|
|
|
Unlike many of the ML models, EM is an unsupervised learning algorithm and it does not take responses (class labels or the function values) on input. Instead, it computes the
|
|
:ref:`MLE` of the Gaussian mixture parameters from the input sample set, stores all the parameters inside the structure:
|
|
:math:`p_{i,k}` in ``probs``,:math:`a_k` in ``means`` :math:`S_k` in ``covs[k]``,:math:`\pi_k` in ``weights`` and optionally computes the output "class label" for each sample:
|
|
:math:`\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N` (i.e. indices of the most-probable mixture for each sample).
|
|
|
|
The trained model can be used further for prediction, just like any other classifier. The model trained is similar to the
|
|
:ref:`Bayes classifier` .
|
|
|
|
Example: Clustering random samples of multi-Gaussian distribution using EM ::
|
|
|
|
#include "ml.h"
|
|
#include "highgui.h"
|
|
|
|
int main( int argc, char** argv )
|
|
{
|
|
const int N = 4;
|
|
const int N1 = (int)sqrt((double)N);
|
|
const CvScalar colors[] = {{0,0,255}},{{0,255,0}},
|
|
{{0,255,255}},{{255,255,0}
|
|
;
|
|
int i, j;
|
|
int nsamples = 100;
|
|
CvRNG rng_state = cvRNG(-1);
|
|
CvMat* samples = cvCreateMat( nsamples, 2, CV_32FC1 );
|
|
CvMat* labels = cvCreateMat( nsamples, 1, CV_32SC1 );
|
|
IplImage* img = cvCreateImage( cvSize( 500, 500 ), 8, 3 );
|
|
float _sample[2];
|
|
CvMat sample = cvMat( 1, 2, CV_32FC1, _sample );
|
|
CvEM em_model;
|
|
CvEMParams params;
|
|
CvMat samples_part;
|
|
|
|
cvReshape( samples, samples, 2, 0 );
|
|
for( i = 0; i < N; i++ )
|
|
{
|
|
CvScalar mean, sigma;
|
|
|
|
// form the training samples
|
|
cvGetRows( samples, &samples_part, i*nsamples/N,
|
|
(i+1)*nsamples/N );
|
|
mean = cvScalar(((i
|
|
((i/N1)+1.)*img->height/(N1+1));
|
|
sigma = cvScalar(30,30);
|
|
cvRandArr( &rng_state, &samples_part, CV_RAND_NORMAL,
|
|
mean, sigma );
|
|
}
|
|
cvReshape( samples, samples, 1, 0 );
|
|
|
|
// initialize model's parameters
|
|
params.covs = NULL;
|
|
params.means = NULL;
|
|
params.weights = NULL;
|
|
params.probs = NULL;
|
|
params.nclusters = N;
|
|
params.cov_mat_type = CvEM::COV_MAT_SPHERICAL;
|
|
params.start_step = CvEM::START_AUTO_STEP;
|
|
params.term_crit.max_iter = 10;
|
|
params.term_crit.epsilon = 0.1;
|
|
params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
|
|
|
|
// cluster the data
|
|
em_model.train( samples, 0, params, labels );
|
|
|
|
#if 0
|
|
// the piece of code shows how to repeatedly optimize the model
|
|
// with less-constrained parameters
|
|
//(COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL)
|
|
// when the output of the first stage is used as input for the second.
|
|
CvEM em_model2;
|
|
params.cov_mat_type = CvEM::COV_MAT_DIAGONAL;
|
|
params.start_step = CvEM::START_E_STEP;
|
|
params.means = em_model.get_means();
|
|
params.covs = (const CvMat**)em_model.get_covs();
|
|
params.weights = em_model.get_weights();
|
|
|
|
em_model2.train( samples, 0, params, labels );
|
|
// to use em_model2, replace em_model.predict()
|
|
// with em_model2.predict() below
|
|
#endif
|
|
// classify every image pixel
|
|
cvZero( img );
|
|
for( i = 0; i < img->height; i++ )
|
|
{
|
|
for( j = 0; j < img->width; j++ )
|
|
{
|
|
CvPoint pt = cvPoint(j, i);
|
|
sample.data.fl[0] = (float)j;
|
|
sample.data.fl[1] = (float)i;
|
|
int response = cvRound(em_model.predict( &sample, NULL ));
|
|
CvScalar c = colors[response];
|
|
|
|
cvCircle( img, pt, 1, cvScalar(c.val[0]*0.75,
|
|
c.val[1]*0.75,c.val[2]*0.75), CV_FILLED );
|
|
}
|
|
}
|
|
|
|
//draw the clustered samples
|
|
for( i = 0; i < nsamples; i++ )
|
|
{
|
|
CvPoint pt;
|
|
pt.x = cvRound(samples->data.fl[i*2]);
|
|
pt.y = cvRound(samples->data.fl[i*2+1]);
|
|
cvCircle( img, pt, 1, colors[labels->data.i[i]], CV_FILLED );
|
|
}
|
|
|
|
cvNamedWindow( "EM-clustering result", 1 );
|
|
cvShowImage( "EM-clustering result", img );
|
|
cvWaitKey(0);
|
|
|
|
cvReleaseMat( &samples );
|
|
cvReleaseMat( &labels );
|
|
return 0;
|
|
}
|
|
..
|
|
|