150 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			150 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* slaed5.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Subroutine */ int slaed5_(integer *i__, real *d__, real *z__, real *delta, 
 | |
| 	real *rho, real *dlam)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     real r__1;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     real b, c__, w, del, tau, temp;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  This subroutine computes the I-th eigenvalue of a symmetric rank-one */
 | |
| /*  modification of a 2-by-2 diagonal matrix */
 | |
| 
 | |
| /*             diag( D )  +  RHO *  Z * transpose(Z) . */
 | |
| 
 | |
| /*  The diagonal elements in the array D are assumed to satisfy */
 | |
| 
 | |
| /*             D(i) < D(j)  for  i < j . */
 | |
| 
 | |
| /*  We also assume RHO > 0 and that the Euclidean norm of the vector */
 | |
| /*  Z is one. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  I      (input) INTEGER */
 | |
| /*         The index of the eigenvalue to be computed.  I = 1 or I = 2. */
 | |
| 
 | |
| /*  D      (input) REAL array, dimension (2) */
 | |
| /*         The original eigenvalues.  We assume D(1) < D(2). */
 | |
| 
 | |
| /*  Z      (input) REAL array, dimension (2) */
 | |
| /*         The components of the updating vector. */
 | |
| 
 | |
| /*  DELTA  (output) REAL array, dimension (2) */
 | |
| /*         The vector DELTA contains the information necessary */
 | |
| /*         to construct the eigenvectors. */
 | |
| 
 | |
| /*  RHO    (input) REAL */
 | |
| /*         The scalar in the symmetric updating formula. */
 | |
| 
 | |
| /*  DLAM   (output) REAL */
 | |
| /*         The computed lambda_I, the I-th updated eigenvalue. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Ren-Cang Li, Computer Science Division, University of California */
 | |
| /*     at Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --delta;
 | |
|     --z__;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     del = d__[2] - d__[1];
 | |
|     if (*i__ == 1) {
 | |
| 	w = *rho * 2.f * (z__[2] * z__[2] - z__[1] * z__[1]) / del + 1.f;
 | |
| 	if (w > 0.f) {
 | |
| 	    b = del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 | |
| 	    c__ = *rho * z__[1] * z__[1] * del;
 | |
| 
 | |
| /*           B > ZERO, always */
 | |
| 
 | |
| 	    tau = c__ * 2.f / (b + sqrt((r__1 = b * b - c__ * 4.f, dabs(r__1))
 | |
| 		    ));
 | |
| 	    *dlam = d__[1] + tau;
 | |
| 	    delta[1] = -z__[1] / tau;
 | |
| 	    delta[2] = z__[2] / (del - tau);
 | |
| 	} else {
 | |
| 	    b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 | |
| 	    c__ = *rho * z__[2] * z__[2] * del;
 | |
| 	    if (b > 0.f) {
 | |
| 		tau = c__ * -2.f / (b + sqrt(b * b + c__ * 4.f));
 | |
| 	    } else {
 | |
| 		tau = (b - sqrt(b * b + c__ * 4.f)) / 2.f;
 | |
| 	    }
 | |
| 	    *dlam = d__[2] + tau;
 | |
| 	    delta[1] = -z__[1] / (del + tau);
 | |
| 	    delta[2] = -z__[2] / tau;
 | |
| 	}
 | |
| 	temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
 | |
| 	delta[1] /= temp;
 | |
| 	delta[2] /= temp;
 | |
|     } else {
 | |
| 
 | |
| /*     Now I=2 */
 | |
| 
 | |
| 	b = -del + *rho * (z__[1] * z__[1] + z__[2] * z__[2]);
 | |
| 	c__ = *rho * z__[2] * z__[2] * del;
 | |
| 	if (b > 0.f) {
 | |
| 	    tau = (b + sqrt(b * b + c__ * 4.f)) / 2.f;
 | |
| 	} else {
 | |
| 	    tau = c__ * 2.f / (-b + sqrt(b * b + c__ * 4.f));
 | |
| 	}
 | |
| 	*dlam = d__[2] + tau;
 | |
| 	delta[1] = -z__[1] / (del + tau);
 | |
| 	delta[2] = -z__[2] / tau;
 | |
| 	temp = sqrt(delta[1] * delta[1] + delta[2] * delta[2]);
 | |
| 	delta[1] /= temp;
 | |
| 	delta[2] /= temp;
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| /*     End OF SLAED5 */
 | |
| 
 | |
| } /* slaed5_ */
 | 
