248 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			248 lines
		
	
	
		
			8.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include "opencv2/objdetect/objdetect.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/imgproc/imgproc.hpp"
 | |
| 
 | |
| #include <cctype>
 | |
| #include <iostream>
 | |
| #include <iterator>
 | |
| #include <stdio.h>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|     cout << "\nThis program demonstrates the smile detector.\n"
 | |
|             "Usage:\n"
 | |
|             "./smiledetect [--cascade=<cascade_path> this is the frontal face classifier]\n"
 | |
|             "   [--smile-cascade=[<smile_cascade_path>]]\n"
 | |
|             "   [--scale=<image scale greater or equal to 1, try 2.0 for example. The larger the faster the processing>]\n"
 | |
|             "   [--try-flip]\n"
 | |
|             "   [video_filename|camera_index]\n\n"
 | |
|             "Example:\n"
 | |
|             "./smiledetect --cascade=\"../../data/haarcascades/haarcascade_frontalface_alt.xml\" --smile-cascade=\"../../data/haarcascades/haarcascade_smile.xml\" --scale=2.0\n\n"
 | |
|             "During execution:\n\tHit any key to quit.\n"
 | |
|             "\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
 | |
| }
 | |
| 
 | |
| void detectAndDraw( Mat& img, CascadeClassifier& cascade,
 | |
|                     CascadeClassifier& nestedCascade,
 | |
|                     double scale, bool tryflip );
 | |
| 
 | |
| string cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
 | |
| string nestedCascadeName = "../../data/haarcascades/haarcascade_smile.xml";
 | |
| 
 | |
| 
 | |
| int main( int argc, const char** argv )
 | |
| {
 | |
|     CvCapture* capture = 0;
 | |
|     Mat frame, frameCopy, image;
 | |
|     const string scaleOpt = "--scale=";
 | |
|     size_t scaleOptLen = scaleOpt.length();
 | |
|     const string cascadeOpt = "--cascade=";
 | |
|     size_t cascadeOptLen = cascadeOpt.length();
 | |
|     const string nestedCascadeOpt = "--smile-cascade";
 | |
|     size_t nestedCascadeOptLen = nestedCascadeOpt.length();
 | |
|     const string tryFlipOpt = "--try-flip";
 | |
|     size_t tryFlipOptLen = tryFlipOpt.length();
 | |
|     string inputName;
 | |
|     bool tryflip = false;
 | |
| 
 | |
|     help();
 | |
| 
 | |
|     CascadeClassifier cascade, nestedCascade;
 | |
|     double scale = 1;
 | |
| 
 | |
|     for( int i = 1; i < argc; i++ )
 | |
|     {
 | |
|         cout << "Processing " << i << " " <<  argv[i] << endl;
 | |
|         if( cascadeOpt.compare( 0, cascadeOptLen, argv[i], cascadeOptLen ) == 0 )
 | |
|         {
 | |
|             cascadeName.assign( argv[i] + cascadeOptLen );
 | |
|             cout << "  from which we have cascadeName= " << cascadeName << endl;
 | |
|         }
 | |
|         else if( nestedCascadeOpt.compare( 0, nestedCascadeOptLen, argv[i], nestedCascadeOptLen ) == 0 )
 | |
|         {
 | |
|             if( argv[i][nestedCascadeOpt.length()] == '=' )
 | |
|                 nestedCascadeName.assign( argv[i] + nestedCascadeOpt.length() + 1 );
 | |
|         }
 | |
|         else if( scaleOpt.compare( 0, scaleOptLen, argv[i], scaleOptLen ) == 0 )
 | |
|         {
 | |
|             if( !sscanf( argv[i] + scaleOpt.length(), "%lf", &scale ) || scale < 1 )
 | |
|                 scale = 1;
 | |
|             cout << " from which we read scale = " << scale << endl;
 | |
|         }
 | |
|         else if( tryFlipOpt.compare( 0, tryFlipOptLen, argv[i], tryFlipOptLen ) == 0 )
 | |
|         {
 | |
|             tryflip = true;
 | |
|             cout << " will try to flip image horizontally to detect assymetric objects\n";
 | |
|         }
 | |
|         else if( argv[i][0] == '-' )
 | |
|         {
 | |
|             cerr << "WARNING: Unknown option " << argv[i] << endl;
 | |
|         }
 | |
|         else
 | |
|             inputName.assign( argv[i] );
 | |
|     }
 | |
| 
 | |
|     if( !cascade.load( cascadeName ) )
 | |
|     {
 | |
|         cerr << "ERROR: Could not load face cascade" << endl;
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
|     if( !nestedCascade.load( nestedCascadeName ) )
 | |
|     {
 | |
|         cerr << "ERROR: Could not load smile cascade" << endl;
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if( inputName.empty() || (isdigit(inputName.c_str()[0]) && inputName.c_str()[1] == '\0') )
 | |
|     {
 | |
|         capture = cvCaptureFromCAM( inputName.empty() ? 0 : inputName.c_str()[0] - '0' );
 | |
|         int c = inputName.empty() ? 0 : inputName.c_str()[0] - '0' ;
 | |
|         if(!capture) cout << "Capture from CAM " <<  c << " didn't work" << endl;
 | |
|     }
 | |
|     else if( inputName.size() )
 | |
|     {
 | |
|         capture = cvCaptureFromAVI( inputName.c_str() );
 | |
|         if(!capture) cout << "Capture from AVI didn't work" << endl;
 | |
|     }
 | |
| 
 | |
|     cvNamedWindow( "result", 1 );
 | |
| 
 | |
|     if( capture )
 | |
|     {
 | |
|         cout << "In capture ..." << endl;
 | |
|         cout << endl << "NOTE: Smile intensity will only be valid after a first smile has been detected" << endl;
 | |
| 
 | |
|         for(;;)
 | |
|         {
 | |
|             IplImage* iplImg = cvQueryFrame( capture );
 | |
|             frame = iplImg;
 | |
|             if( frame.empty() )
 | |
|                 break;
 | |
|             if( iplImg->origin == IPL_ORIGIN_TL )
 | |
|                 frame.copyTo( frameCopy );
 | |
|             else
 | |
|                 flip( frame, frameCopy, 0 );
 | |
| 
 | |
|             detectAndDraw( frameCopy, cascade, nestedCascade, scale, tryflip );
 | |
| 
 | |
|             if( waitKey( 10 ) >= 0 )
 | |
|                 goto _cleanup_;
 | |
|         }
 | |
| 
 | |
|         waitKey(0);
 | |
| 
 | |
| _cleanup_:
 | |
|         cvReleaseCapture( &capture );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cerr << "ERROR: Could not initiate capture" << endl;
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     cvDestroyWindow("result");
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void detectAndDraw( Mat& img, CascadeClassifier& cascade,
 | |
|                     CascadeClassifier& nestedCascade,
 | |
|                     double scale, bool tryflip)
 | |
| {
 | |
|     int i = 0;
 | |
|     vector<Rect> faces, faces2;
 | |
|     const static Scalar colors[] =  { CV_RGB(0,0,255),
 | |
|         CV_RGB(0,128,255),
 | |
|         CV_RGB(0,255,255),
 | |
|         CV_RGB(0,255,0),
 | |
|         CV_RGB(255,128,0),
 | |
|         CV_RGB(255,255,0),
 | |
|         CV_RGB(255,0,0),
 | |
|         CV_RGB(255,0,255)} ;
 | |
|     Mat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
 | |
| 
 | |
|     cvtColor( img, gray, CV_BGR2GRAY );
 | |
|     resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
 | |
|     equalizeHist( smallImg, smallImg );
 | |
| 
 | |
|     cascade.detectMultiScale( smallImg, faces,
 | |
|         1.1, 2, 0
 | |
|         //|CV_HAAR_FIND_BIGGEST_OBJECT
 | |
|         //|CV_HAAR_DO_ROUGH_SEARCH
 | |
|         |CV_HAAR_SCALE_IMAGE
 | |
|         ,
 | |
|         Size(30, 30) );
 | |
|     if( tryflip )
 | |
|     {
 | |
|         flip(smallImg, smallImg, 1);
 | |
|         cascade.detectMultiScale( smallImg, faces2,
 | |
|                                  1.1, 2, 0
 | |
|                                  //|CV_HAAR_FIND_BIGGEST_OBJECT
 | |
|                                  //|CV_HAAR_DO_ROUGH_SEARCH
 | |
|                                  |CV_HAAR_SCALE_IMAGE
 | |
|                                  ,
 | |
|                                  Size(30, 30) );
 | |
|         for( vector<Rect>::const_iterator r = faces2.begin(); r != faces2.end(); r++ )
 | |
|         {
 | |
|             faces.push_back(Rect(smallImg.cols - r->x - r->width, r->y, r->width, r->height));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for( vector<Rect>::iterator r = faces.begin(); r != faces.end(); r++, i++ )
 | |
|     {
 | |
|         Mat smallImgROI;
 | |
|         vector<Rect> nestedObjects;
 | |
|         Point center;
 | |
|         Scalar color = colors[i%8];
 | |
|         int radius;
 | |
| 
 | |
|         double aspect_ratio = (double)r->width/r->height;
 | |
|         if( 0.75 < aspect_ratio && aspect_ratio < 1.3 )
 | |
|         {
 | |
|             center.x = cvRound((r->x + r->width*0.5)*scale);
 | |
|             center.y = cvRound((r->y + r->height*0.5)*scale);
 | |
|             radius = cvRound((r->width + r->height)*0.25*scale);
 | |
|             circle( img, center, radius, color, 3, 8, 0 );
 | |
|         }
 | |
|         else
 | |
|             rectangle( img, cvPoint(cvRound(r->x*scale), cvRound(r->y*scale)),
 | |
|                        cvPoint(cvRound((r->x + r->width-1)*scale), cvRound((r->y + r->height-1)*scale)),
 | |
|                        color, 3, 8, 0);
 | |
| 
 | |
|         const int half_height=cvRound((float)r->height/2);
 | |
|         r->y=r->y + half_height;
 | |
|         r->height = half_height;
 | |
|         smallImgROI = smallImg(*r);
 | |
|         nestedCascade.detectMultiScale( smallImgROI, nestedObjects,
 | |
|             1.1, 0, 0
 | |
|             //|CV_HAAR_FIND_BIGGEST_OBJECT
 | |
|             //|CV_HAAR_DO_ROUGH_SEARCH
 | |
|             //|CV_HAAR_DO_CANNY_PRUNING
 | |
|             |CV_HAAR_SCALE_IMAGE
 | |
|             ,
 | |
|             Size(30, 30) );
 | |
| 
 | |
|         // The number of detected neighbors depends on image size (and also illumination, etc.). The
 | |
|         // following steps use a floating minimum and maximum of neighbors. Intensity thus estimated will be
 | |
|         //accurate only after a first smile has been displayed by the user.
 | |
|         const int smile_neighbors = (int)nestedObjects.size();
 | |
|         static int max_neighbors=-1;
 | |
|         static int min_neighbors=-1;
 | |
|         if (min_neighbors == -1) min_neighbors = smile_neighbors;
 | |
|         max_neighbors = MAX(max_neighbors, smile_neighbors);
 | |
| 
 | |
|         // Draw rectangle on the left side of the image reflecting smile intensity
 | |
|         float intensityZeroOne = ((float)smile_neighbors - min_neighbors) / (max_neighbors - min_neighbors + 1);
 | |
|         int rect_height = cvRound((float)img.rows * intensityZeroOne);
 | |
|         CvScalar col = CV_RGB((float)255 * intensityZeroOne, 0, 0);
 | |
|         rectangle(img, cvPoint(0, img.rows), cvPoint(img.cols/10, img.rows - rect_height), col, -1);
 | |
|     }
 | |
| 
 | |
|     cv::imshow( "result", img );
 | |
| }
 | 
