2013-10-23 23:52:05 +04:00

1601 lines
75 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Shengen Yan, yanshengen@gmail.com
// Rock Li, Rock.Li@amd.com
// Zero Lin, Zero.Lin@amd.com
// Zhang Ying, zhangying913@gmail.com
// Xu Pang, pangxu010@163.com
// Wu Zailong, bullet@yeah.net
// Wenju He, wenju@multicorewareinc.com
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
namespace cv
{
namespace ocl
{
////////////////////////////////////OpenCL call wrappers////////////////////////////
template <typename T> struct index_and_sizeof;
template <> struct index_and_sizeof<char>
{
enum { index = 1 };
};
template <> struct index_and_sizeof<unsigned char>
{
enum { index = 2 };
};
template <> struct index_and_sizeof<short>
{
enum { index = 3 };
};
template <> struct index_and_sizeof<unsigned short>
{
enum { index = 4 };
};
template <> struct index_and_sizeof<int>
{
enum { index = 5 };
};
template <> struct index_and_sizeof<float>
{
enum { index = 6 };
};
template <> struct index_and_sizeof<double>
{
enum { index = 7 };
};
/////////////////////////////////////////////////////////////////////////////////////
// threshold
typedef void (*gpuThresh_t)(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type);
static void threshold_8u(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
{
uchar thresh_uchar = cvFloor(thresh);
uchar max_val = cvRound(maxVal);
size_t cols = (dst.cols + (dst.offset % 16) + 15) / 16;
size_t bSizeX = 16, bSizeY = 16;
size_t gSizeX = cols % bSizeX == 0 ? cols : (cols + bSizeX - 1) / bSizeX * bSizeX;
size_t gSizeY = dst.rows;
size_t globalThreads[3] = {gSizeX, gSizeY, 1};
size_t localThreads[3] = {bSizeX, bSizeY, 1};
vector< pair<size_t, const void *> > args;
args.push_back( make_pair(sizeof(cl_mem), &src.data));
args.push_back( make_pair(sizeof(cl_mem), &dst.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.step));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back( make_pair(sizeof(cl_uchar), (void *)&thresh_uchar));
args.push_back( make_pair(sizeof(cl_uchar), (void *)&max_val));
args.push_back( make_pair(sizeof(cl_int), (void *)&type));
openCLExecuteKernel(src.clCxt, &imgproc_threshold, "threshold", globalThreads, localThreads, args, src.oclchannels(), src.depth());
}
static void threshold_32f(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
{
float thresh_f = thresh;
float max_val = maxVal;
int dst_offset = (dst.offset >> 2);
int dst_step = (dst.step >> 2);
int src_offset = (src.offset >> 2);
int src_step = (src.step >> 2);
size_t cols = (dst.cols + (dst_offset & 3) + 3) / 4;
size_t bSizeX = 16, bSizeY = 16;
size_t gSizeX = cols % bSizeX == 0 ? cols : (cols + bSizeX - 1) / bSizeX * bSizeX;
size_t gSizeY = dst.rows;
size_t globalThreads[3] = {gSizeX, gSizeY, 1};
size_t localThreads[3] = {bSizeX, bSizeY, 1};
vector< pair<size_t, const void *> > args;
args.push_back( make_pair(sizeof(cl_mem), &src.data));
args.push_back( make_pair(sizeof(cl_mem), &dst.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&src_offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&src_step));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_step));
args.push_back( make_pair(sizeof(cl_float), (void *)&thresh_f));
args.push_back( make_pair(sizeof(cl_float), (void *)&max_val));
args.push_back( make_pair(sizeof(cl_int), (void *)&type));
openCLExecuteKernel(src.clCxt, &imgproc_threshold, "threshold", globalThreads, localThreads, args, src.oclchannels(), src.depth());
}
// threshold: support 8UC1 and 32FC1 data type and five threshold type
double threshold(const oclMat &src, oclMat &dst, double thresh, double maxVal, int type)
{
//TODO: These limitations shall be removed later.
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1);
CV_Assert(type == THRESH_BINARY || type == THRESH_BINARY_INV || type == THRESH_TRUNC
|| type == THRESH_TOZERO || type == THRESH_TOZERO_INV );
static const gpuThresh_t gpuThresh_callers[2] = {threshold_8u, threshold_32f};
dst.create( src.size(), src.type() );
gpuThresh_callers[(src.type() == CV_32FC1)](src, dst, thresh, maxVal, type);
return thresh;
}
////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////// remap //////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////
void remap( const oclMat &src, oclMat &dst, oclMat &map1, oclMat &map2, int interpolation, int borderType, const Scalar &borderValue )
{
Context *clCxt = src.clCxt;
bool supportsDouble = clCxt->supportsFeature(FEATURE_CL_DOUBLE);
if (!supportsDouble && src.depth() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device does not support double");
return;
}
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST
|| interpolation == INTER_CUBIC || interpolation == INTER_LANCZOS4);
CV_Assert((map1.type() == CV_16SC2 && !map2.data) || (map1.type() == CV_32FC2 && !map2.data) ||
(map1.type() == CV_32FC1 && map2.type() == CV_32FC1));
CV_Assert(!map2.data || map2.size() == map1.size());
CV_Assert(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE || borderType == BORDER_WRAP
|| borderType == BORDER_REFLECT_101 || borderType == BORDER_REFLECT);
dst.create(map1.size(), src.type());
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
const char * const channelMap[] = { "", "", "2", "4", "4" };
const char * const interMap[] = { "INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_LINEAR", "INTER_LANCZOS" };
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
"BORDER_REFLECT_101", "BORDER_TRANSPARENT" };
string kernelName = "remap";
if ( map1.type() == CV_32FC2 && !map2.data )
kernelName += "_32FC2";
else if (map1.type() == CV_16SC2 && !map2.data)
kernelName += "_16SC2";
else if (map1.type() == CV_32FC1 && map2.type() == CV_32FC1)
kernelName += "_2_32FC1";
else
CV_Error(CV_StsBadArg, "Unsupported map types");
int ocn = dst.oclchannels();
size_t localThreads[3] = { 16, 16, 1};
size_t globalThreads[3] = { dst.cols, dst.rows, 1};
Mat scalar(1, 1, CV_MAKE_TYPE(dst.depth(), ocn), borderValue);
std::string buildOptions = format("-D %s -D %s -D T=%s%s", interMap[interpolation],
borderMap[borderType], typeMap[src.depth()], channelMap[ocn]);
if (interpolation != INTER_NEAREST)
{
int wdepth = std::max(CV_32F, dst.depth());
if (!supportsDouble)
wdepth = std::min(CV_32F, wdepth);
buildOptions += format(" -D WT=%s%s -D convertToT=convert_%s%s%s -D convertToWT=convert_%s%s"
" -D convertToWT2=convert_%s2 -D WT2=%s2",
typeMap[wdepth], channelMap[ocn],
typeMap[src.depth()], channelMap[ocn], src.depth() < CV_32F ? "_sat_rte" : "",
typeMap[wdepth], channelMap[ocn],
typeMap[wdepth], typeMap[wdepth]);
}
int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize();
int map1_step = map1.step / map1.elemSize(), map1_offset = map1.offset / map1.elemSize();
int map2_step = map2.step / map2.elemSize(), map2_offset = map2.offset / map2.elemSize();
int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize();
vector< pair<size_t, const void *> > args;
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair(sizeof(cl_mem), (void *)&map1.data));
if (!map2.empty())
args.push_back( make_pair(sizeof(cl_mem), (void *)&map2.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&src_offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&map1_offset));
if (!map2.empty())
args.push_back( make_pair(sizeof(cl_int), (void *)&map2_offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&src_step));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst_step));
args.push_back( make_pair(sizeof(cl_int), (void *)&map1_step));
if (!map2.empty())
args.push_back( make_pair(sizeof(cl_int), (void *)&map2_step));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair(scalar.elemSize(), (void *)scalar.data));
openCLExecuteKernel(clCxt, &imgproc_remap, kernelName, globalThreads, localThreads, args, -1, -1, buildOptions.c_str());
}
////////////////////////////////////////////////////////////////////////////////////////////
// resize
static void resize_gpu( const oclMat &src, oclMat &dst, double fx, double fy, int interpolation)
{
CV_Assert( (src.channels() == dst.channels()) );
Context *clCxt = src.clCxt;
float ifx = 1. / fx;
float ify = 1. / fy;
double ifx_d = 1. / fx;
double ify_d = 1. / fy;
int srcStep_in_pixel = src.step1() / src.oclchannels();
int srcoffset_in_pixel = src.offset / src.elemSize();
int dstStep_in_pixel = dst.step1() / dst.oclchannels();
int dstoffset_in_pixel = dst.offset / dst.elemSize();
string kernelName;
if (interpolation == INTER_LINEAR)
kernelName = "resizeLN";
else if (interpolation == INTER_NEAREST)
kernelName = "resizeNN";
//TODO: improve this kernel
size_t blkSizeX = 16, blkSizeY = 16;
size_t glbSizeX;
if (src.type() == CV_8UC1)
{
size_t cols = (dst.cols + dst.offset % 4 + 3) / 4;
glbSizeX = cols % blkSizeX == 0 && cols != 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
}
else
glbSizeX = dst.cols % blkSizeX == 0 && dst.cols != 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
size_t glbSizeY = dst.rows % blkSizeY == 0 && dst.rows != 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
vector< pair<size_t, const void *> > args;
if (interpolation == INTER_NEAREST)
{
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
{
args.push_back( make_pair(sizeof(cl_double), (void *)&ifx_d));
args.push_back( make_pair(sizeof(cl_double), (void *)&ify_d));
}
else
{
args.push_back( make_pair(sizeof(cl_float), (void *)&ifx));
args.push_back( make_pair(sizeof(cl_float), (void *)&ify));
}
}
else
{
args.push_back( make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcoffset_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&dstStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&srcStep_in_pixel));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair(sizeof(cl_float), (void *)&ifx));
args.push_back( make_pair(sizeof(cl_float), (void *)&ify));
}
openCLExecuteKernel(clCxt, &imgproc_resize, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
}
void resize(const oclMat &src, oclMat &dst, Size dsize,
double fx, double fy, int interpolation)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3 || src.type() == CV_8UC4
|| src.type() == CV_32FC1 || src.type() == CV_32FC3 || src.type() == CV_32FC4);
CV_Assert(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST);
CV_Assert( src.size().area() > 0 );
CV_Assert( !(dsize == Size()) || (fx > 0 && fy > 0) );
if (!(dsize == Size()) && (fx > 0 && fy > 0))
if (dsize.width != (int)(src.cols * fx) || dsize.height != (int)(src.rows * fy))
CV_Error(CV_StsUnmatchedSizes, "invalid dsize and fx, fy!");
if ( dsize == Size() )
dsize = Size(saturate_cast<int>(src.cols * fx), saturate_cast<int>(src.rows * fy));
else
{
fx = (double)dsize.width / src.cols;
fy = (double)dsize.height / src.rows;
}
dst.create(dsize, src.type());
if ( interpolation == INTER_NEAREST || interpolation == INTER_LINEAR )
{
resize_gpu( src, dst, fx, fy, interpolation);
return;
}
CV_Error(CV_StsUnsupportedFormat, "Non-supported interpolation method");
}
////////////////////////////////////////////////////////////////////////
// medianFilter
void medianFilter(const oclMat &src, oclMat &dst, int m)
{
CV_Assert( m % 2 == 1 && m > 1 );
CV_Assert( (src.depth() == CV_8U || src.depth() == CV_32F) && (src.channels() == 1 || src.channels() == 4));
dst.create(src.size(), src.type());
int srcStep = src.step / src.elemSize(), dstStep = dst.step / dst.elemSize();
int srcOffset = src.offset / src.elemSize(), dstOffset = dst.offset / dst.elemSize();
Context *clCxt = src.clCxt;
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcOffset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstOffset));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
size_t globalThreads[3] = {(src.cols + 18) / 16 * 16, (src.rows + 15) / 16 * 16, 1};
size_t localThreads[3] = {16, 16, 1};
if (m == 3)
{
string kernelName = "medianFilter3";
openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
}
else if (m == 5)
{
string kernelName = "medianFilter5";
openCLExecuteKernel(clCxt, &imgproc_median, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
}
else
CV_Error(CV_StsBadArg, "Non-supported filter length");
}
////////////////////////////////////////////////////////////////////////
// copyMakeBorder
void copyMakeBorder(const oclMat &src, oclMat &dst, int top, int bottom, int left, int right, int bordertype, const Scalar &scalar)
{
if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "Selected device does not support double");
return;
}
oclMat _src = src;
CV_Assert(top >= 0 && bottom >= 0 && left >= 0 && right >= 0);
if( (_src.wholecols != _src.cols || _src.wholerows != _src.rows) && (bordertype & BORDER_ISOLATED) == 0 )
{
Size wholeSize;
Point ofs;
_src.locateROI(wholeSize, ofs);
int dtop = std::min(ofs.y, top);
int dbottom = std::min(wholeSize.height - _src.rows - ofs.y, bottom);
int dleft = std::min(ofs.x, left);
int dright = std::min(wholeSize.width - _src.cols - ofs.x, right);
_src.adjustROI(dtop, dbottom, dleft, dright);
top -= dtop;
left -= dleft;
bottom -= dbottom;
right -= dright;
}
bordertype &= ~cv::BORDER_ISOLATED;
dst.create(_src.rows + top + bottom, _src.cols + left + right, _src.type());
int srcStep = _src.step / _src.elemSize(), dstStep = dst.step / dst.elemSize();
int srcOffset = _src.offset / _src.elemSize(), dstOffset = dst.offset / dst.elemSize();
int depth = _src.depth(), ochannels = _src.oclchannels();
int __bordertype[] = { BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101 };
const char *borderstr[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP", "BORDER_REFLECT_101" };
int bordertype_index = -1;
for (int i = 0, end = sizeof(__bordertype) / sizeof(int); i < end; i++)
if (__bordertype[i] == bordertype)
{
bordertype_index = i;
break;
}
if (bordertype_index < 0)
CV_Error(CV_StsBadArg, "Unsupported border type");
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
vector< pair<size_t, const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&_src.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&_src.cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&_src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&srcOffset));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstStep));
args.push_back( make_pair( sizeof(cl_int), (void *)&dstOffset));
args.push_back( make_pair( sizeof(cl_int), (void *)&top));
args.push_back( make_pair( sizeof(cl_int), (void *)&left));
const char * const typeMap[] = { "uchar", "char", "ushort", "short", "int", "float", "double" };
const char * const channelMap[] = { "", "", "2", "4", "4" };
std::string buildOptions = format("-D GENTYPE=%s%s -D %s",
typeMap[depth], channelMap[ochannels],
borderstr[bordertype_index]);
int cn = src.channels(), ocn = src.oclchannels();
int bufSize = src.elemSize1() * ocn;
AutoBuffer<uchar> _buf(bufSize);
uchar * buf = (uchar *)_buf;
scalarToRawData(scalar, buf, dst.type());
memset(buf + src.elemSize1() * cn, 0, (ocn - cn) * src.elemSize1());
args.push_back( make_pair( bufSize , (void *)buf ));
openCLExecuteKernel(src.clCxt, &imgproc_copymakeboder, "copymakeborder", globalThreads,
localThreads, args, -1, -1, buildOptions.c_str());
}
////////////////////////////////////////////////////////////////////////
// warp
namespace
{
#define F double
void convert_coeffs(F *M)
{
double D = M[0] * M[4] - M[1] * M[3];
D = D != 0 ? 1. / D : 0;
double A11 = M[4] * D, A22 = M[0] * D;
M[0] = A11;
M[1] *= -D;
M[3] *= -D;
M[4] = A22;
double b1 = -M[0] * M[2] - M[1] * M[5];
double b2 = -M[3] * M[2] - M[4] * M[5];
M[2] = b1;
M[5] = b2;
}
double invert(double *M)
{
#define Sd(y,x) (Sd[y*3+x])
#define Dd(y,x) (Dd[y*3+x])
#define det3(m) (m(0,0)*(m(1,1)*m(2,2) - m(1,2)*m(2,1)) - \
m(0,1)*(m(1,0)*m(2,2) - m(1,2)*m(2,0)) + \
m(0,2)*(m(1,0)*m(2,1) - m(1,1)*m(2,0)))
double *Sd = M;
double *Dd = M;
double d = det3(Sd);
double result = 0;
if ( d != 0)
{
double t[9];
result = d;
d = 1. / d;
t[0] = (Sd(1, 1) * Sd(2, 2) - Sd(1, 2) * Sd(2, 1)) * d;
t[1] = (Sd(0, 2) * Sd(2, 1) - Sd(0, 1) * Sd(2, 2)) * d;
t[2] = (Sd(0, 1) * Sd(1, 2) - Sd(0, 2) * Sd(1, 1)) * d;
t[3] = (Sd(1, 2) * Sd(2, 0) - Sd(1, 0) * Sd(2, 2)) * d;
t[4] = (Sd(0, 0) * Sd(2, 2) - Sd(0, 2) * Sd(2, 0)) * d;
t[5] = (Sd(0, 2) * Sd(1, 0) - Sd(0, 0) * Sd(1, 2)) * d;
t[6] = (Sd(1, 0) * Sd(2, 1) - Sd(1, 1) * Sd(2, 0)) * d;
t[7] = (Sd(0, 1) * Sd(2, 0) - Sd(0, 0) * Sd(2, 1)) * d;
t[8] = (Sd(0, 0) * Sd(1, 1) - Sd(0, 1) * Sd(1, 0)) * d;
Dd(0, 0) = t[0];
Dd(0, 1) = t[1];
Dd(0, 2) = t[2];
Dd(1, 0) = t[3];
Dd(1, 1) = t[4];
Dd(1, 2) = t[5];
Dd(2, 0) = t[6];
Dd(2, 1) = t[7];
Dd(2, 2) = t[8];
}
return result;
}
void warpAffine_gpu(const oclMat &src, oclMat &dst, F coeffs[2][3], int interpolation)
{
CV_Assert( (src.oclchannels() == dst.oclchannels()) );
int srcStep = src.step1();
int dstStep = dst.step1();
float float_coeffs[2][3];
cl_mem coeffs_cm;
Context *clCxt = src.clCxt;
string s[3] = {"NN", "Linear", "Cubic"};
string kernelName = "warpAffine" + s[interpolation];
if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
{
cl_int st;
coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(F) * 2 * 3, NULL, &st );
openCLVerifyCall(st);
openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0,
sizeof(F) * 2 * 3, coeffs, 0, 0, 0));
}
else
{
cl_int st;
for(int m = 0; m < 2; m++)
for(int n = 0; n < 3; n++)
float_coeffs[m][n] = coeffs[m][n];
coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(float) * 2 * 3, NULL, &st );
openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm,
1, 0, sizeof(float) * 2 * 3, float_coeffs, 0, 0, 0));
}
//TODO: improve this kernel
size_t blkSizeX = 16, blkSizeY = 16;
size_t glbSizeX;
size_t cols;
if (src.type() == CV_8UC1 && interpolation != 2)
{
cols = (dst.cols + dst.offset % 4 + 3) / 4;
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
}
else
{
cols = dst.cols;
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
}
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
vector< pair<size_t, const void *> > args;
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back(make_pair(sizeof(cl_int), (void *)&srcStep));
args.push_back(make_pair(sizeof(cl_int), (void *)&dstStep));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.offset));
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.offset));
args.push_back(make_pair(sizeof(cl_mem), (void *)&coeffs_cm));
args.push_back(make_pair(sizeof(cl_int), (void *)&cols));
openCLExecuteKernel(clCxt, &imgproc_warpAffine, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
openCLSafeCall(clReleaseMemObject(coeffs_cm));
}
void warpPerspective_gpu(const oclMat &src, oclMat &dst, double coeffs[3][3], int interpolation)
{
CV_Assert( (src.oclchannels() == dst.oclchannels()) );
int srcStep = src.step1();
int dstStep = dst.step1();
float float_coeffs[3][3];
cl_mem coeffs_cm;
Context *clCxt = src.clCxt;
string s[3] = {"NN", "Linear", "Cubic"};
string kernelName = "warpPerspective" + s[interpolation];
if (src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
{
cl_int st;
coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(double) * 3 * 3, NULL, &st );
openCLVerifyCall(st);
openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0,
sizeof(double) * 3 * 3, coeffs, 0, 0, 0));
}
else
{
cl_int st;
for(int m = 0; m < 3; m++)
for(int n = 0; n < 3; n++)
float_coeffs[m][n] = coeffs[m][n];
coeffs_cm = clCreateBuffer(*(cl_context*)clCxt->getOpenCLContextPtr(), CL_MEM_READ_WRITE, sizeof(float) * 3 * 3, NULL, &st );
openCLVerifyCall(st);
openCLSafeCall(clEnqueueWriteBuffer(*(cl_command_queue*)clCxt->getOpenCLCommandQueuePtr(), (cl_mem)coeffs_cm, 1, 0,
sizeof(float) * 3 * 3, float_coeffs, 0, 0, 0));
}
//TODO: improve this kernel
size_t blkSizeX = 16, blkSizeY = 16;
size_t glbSizeX;
size_t cols;
if (src.type() == CV_8UC1 && interpolation == 0)
{
cols = (dst.cols + dst.offset % 4 + 3) / 4;
glbSizeX = cols % blkSizeX == 0 ? cols : (cols / blkSizeX + 1) * blkSizeX;
}
else
{
cols = dst.cols;
glbSizeX = dst.cols % blkSizeX == 0 ? dst.cols : (dst.cols / blkSizeX + 1) * blkSizeX;
}
size_t glbSizeY = dst.rows % blkSizeY == 0 ? dst.rows : (dst.rows / blkSizeY + 1) * blkSizeY;
size_t globalThreads[3] = {glbSizeX, glbSizeY, 1};
size_t localThreads[3] = {blkSizeX, blkSizeY, 1};
vector< pair<size_t, const void *> > args;
args.push_back(make_pair(sizeof(cl_mem), (void *)&src.data));
args.push_back(make_pair(sizeof(cl_mem), (void *)&dst.data));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.cols));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.rows));
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back(make_pair(sizeof(cl_int), (void *)&srcStep));
args.push_back(make_pair(sizeof(cl_int), (void *)&dstStep));
args.push_back(make_pair(sizeof(cl_int), (void *)&src.offset));
args.push_back(make_pair(sizeof(cl_int), (void *)&dst.offset));
args.push_back(make_pair(sizeof(cl_mem), (void *)&coeffs_cm));
args.push_back(make_pair(sizeof(cl_int), (void *)&cols));
openCLExecuteKernel(clCxt, &imgproc_warpPerspective, kernelName, globalThreads, localThreads, args, src.oclchannels(), src.depth());
openCLSafeCall(clReleaseMemObject(coeffs_cm));
}
}
void warpAffine(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags)
{
int interpolation = flags & INTER_MAX;
CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.oclchannels() != 2 && src.oclchannels() != 3);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
CV_Assert(M.rows == 2 && M.cols == 3);
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
F coeffs[2][3];
double coeffsM[2*3];
Mat coeffsMat(2, 3, CV_64F, (void *)coeffsM);
M.convertTo(coeffsMat, coeffsMat.type());
if (!warpInd)
convert_coeffs(coeffsM);
for(int i = 0; i < 2; ++i)
for(int j = 0; j < 3; ++j)
coeffs[i][j] = coeffsM[i*3+j];
warpAffine_gpu(src, dst, coeffs, interpolation);
}
void warpPerspective(const oclMat &src, oclMat &dst, const Mat &M, Size dsize, int flags)
{
int interpolation = flags & INTER_MAX;
CV_Assert((src.depth() == CV_8U || src.depth() == CV_32F) && src.oclchannels() != 2 && src.oclchannels() != 3);
CV_Assert(interpolation == INTER_NEAREST || interpolation == INTER_LINEAR || interpolation == INTER_CUBIC);
dst.create(dsize, src.type());
CV_Assert(M.rows == 3 && M.cols == 3);
int warpInd = (flags & WARP_INVERSE_MAP) >> 4;
double coeffs[3][3];
double coeffsM[3*3];
Mat coeffsMat(3, 3, CV_64F, (void *)coeffsM);
M.convertTo(coeffsMat, coeffsMat.type());
if (!warpInd)
invert(coeffsM);
for(int i = 0; i < 3; ++i)
for(int j = 0; j < 3; ++j)
coeffs[i][j] = coeffsM[i*3+j];
warpPerspective_gpu(src, dst, coeffs, interpolation);
}
////////////////////////////////////////////////////////////////////////
// integral
void integral(const oclMat &src, oclMat &sum, oclMat &sqsum)
{
CV_Assert(src.type() == CV_8UC1);
if (!src.clCxt->supportsFeature(ocl::FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "Select device doesn't support double");
return;
}
int vlen = 4;
int offset = src.offset / vlen;
int pre_invalid = src.offset % vlen;
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
oclMat t_sum , t_sqsum;
int w = src.cols + 1, h = src.rows + 1;
int depth = src.depth() == CV_8U ? CV_32S : CV_64F;
int type = CV_MAKE_TYPE(depth, 1);
t_sum.create(src.cols, src.rows, type);
sum.create(h, w, type);
t_sqsum.create(src.cols, src.rows, CV_32FC1);
sqsum.create(h, w, CV_32FC1);
int sum_offset = sum.offset / vlen;
int sqsum_offset = sqsum.offset / vlen;
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&pre_invalid ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_cols", gt, lt, args, -1, depth);
args.clear();
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sqsum.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&sum.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&sqsum.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sqsum_offset));
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral, "integral_rows", gt2, lt2, args, -1, depth);
}
void integral(const oclMat &src, oclMat &sum)
{
CV_Assert(src.type() == CV_8UC1);
int vlen = 4;
int offset = src.offset / vlen;
int pre_invalid = src.offset % vlen;
int vcols = (pre_invalid + src.cols + vlen - 1) / vlen;
oclMat t_sum;
int w = src.cols + 1, h = src.rows + 1;
int depth = src.depth() == CV_8U ? CV_32S : CV_32F;
int type = CV_MAKE_TYPE(depth, 1);
t_sum.create(src.cols, src.rows, type);
sum.create(h, w, type);
int sum_offset = sum.offset / vlen;
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&pre_invalid ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step));
size_t gt[3] = {((vcols + 1) / 2) * 256, 1, 1}, lt[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_cols", gt, lt, args, -1, depth);
args.clear();
args.push_back( make_pair( sizeof(cl_mem) , (void *)&t_sum.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&sum.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&t_sum.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sum_offset));
size_t gt2[3] = {t_sum.cols * 32, 1, 1}, lt2[3] = {256, 1, 1};
openCLExecuteKernel(src.clCxt, &imgproc_integral_sum, "integral_sum_rows", gt2, lt2, args, -1, depth);
}
/////////////////////// corner //////////////////////////////
static void extractCovData(const oclMat &src, oclMat &Dx, oclMat &Dy,
int blockSize, int ksize, int borderType)
{
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_32FC1);
double scale = static_cast<double>(1 << ((ksize > 0 ? ksize : 3) - 1)) * blockSize;
if (ksize < 0)
scale *= 2.;
if (src.depth() == CV_8U)
{
scale *= 255.;
scale = 1. / scale;
}
else
scale = 1. / scale;
if (ksize > 0)
{
Sobel(src, Dx, CV_32F, 1, 0, ksize, scale, 0, borderType);
Sobel(src, Dy, CV_32F, 0, 1, ksize, scale, 0, borderType);
}
else
{
Scharr(src, Dx, CV_32F, 1, 0, scale, 0, borderType);
Scharr(src, Dy, CV_32F, 0, 1, scale, 0, borderType);
}
CV_Assert(Dx.offset == 0 && Dy.offset == 0);
}
static void corner_ocl(const cv::ocl::ProgramEntry* source, string kernelName, int block_size, float k, oclMat &Dx, oclMat &Dy,
oclMat &dst, int border_type)
{
char borderType[30];
switch (border_type)
{
case cv::BORDER_CONSTANT:
sprintf(borderType, "BORDER_CONSTANT");
break;
case cv::BORDER_REFLECT101:
sprintf(borderType, "BORDER_REFLECT101");
break;
case cv::BORDER_REFLECT:
sprintf(borderType, "BORDER_REFLECT");
break;
case cv::BORDER_REPLICATE:
sprintf(borderType, "BORDER_REPLICATE");
break;
default:
CV_Error(CV_StsBadFlag, "BORDER type is not supported!");
}
std::string buildOptions = format("-D anX=%d -D anY=%d -D ksX=%d -D ksY=%d -D %s",
block_size / 2, block_size / 2, block_size, block_size, borderType);
size_t blockSizeX = 256, blockSizeY = 1;
size_t gSize = blockSizeX - block_size / 2 * 2;
size_t globalSizeX = (Dx.cols) % gSize == 0 ? Dx.cols / gSize * blockSizeX : (Dx.cols / gSize + 1) * blockSizeX;
size_t rows_per_thread = 2;
size_t globalSizeY = ((Dx.rows + rows_per_thread - 1) / rows_per_thread) % blockSizeY == 0 ?
((Dx.rows + rows_per_thread - 1) / rows_per_thread) :
(((Dx.rows + rows_per_thread - 1) / rows_per_thread) / blockSizeY + 1) * blockSizeY;
size_t gt[3] = { globalSizeX, globalSizeY, 1 };
size_t lt[3] = { blockSizeX, blockSizeY, 1 };
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&Dx.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&Dy.data));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data));
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dx.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dx.wholerows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dx.wholecols ));
args.push_back( make_pair(sizeof(cl_int), (void *)&Dx.step));
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dy.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dy.wholerows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&Dy.wholecols ));
args.push_back( make_pair(sizeof(cl_int), (void *)&Dy.step));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.offset));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.rows));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.cols));
args.push_back( make_pair(sizeof(cl_int), (void *)&dst.step));
args.push_back( make_pair( sizeof(cl_float) , (void *)&k));
openCLExecuteKernel(dst.clCxt, source, kernelName, gt, lt, args, -1, -1, buildOptions.c_str());
}
void cornerHarris(const oclMat &src, oclMat &dst, int blockSize, int ksize,
double k, int borderType)
{
oclMat dx, dy;
cornerHarris_dxdy(src, dst, dx, dy, blockSize, ksize, k, borderType);
}
void cornerHarris_dxdy(const oclMat &src, oclMat &dst, oclMat &dx, oclMat &dy, int blockSize, int ksize,
double k, int borderType)
{
if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "Select device doesn't support double");
return;
}
CV_Assert(src.cols >= blockSize / 2 && src.rows >= blockSize / 2);
CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE
|| borderType == cv::BORDER_REFLECT);
extractCovData(src, dx, dy, blockSize, ksize, borderType);
dst.create(src.size(), CV_32F);
corner_ocl(&imgproc_calcHarris, "calcHarris", blockSize, static_cast<float>(k), dx, dy, dst, borderType);
}
void cornerMinEigenVal(const oclMat &src, oclMat &dst, int blockSize, int ksize, int borderType)
{
oclMat dx, dy;
cornerMinEigenVal_dxdy(src, dst, dx, dy, blockSize, ksize, borderType);
}
void cornerMinEigenVal_dxdy(const oclMat &src, oclMat &dst, oclMat &dx, oclMat &dy, int blockSize, int ksize, int borderType)
{
if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE) && src.depth() == CV_64F)
{
CV_Error(CV_OpenCLDoubleNotSupported, "select device don't support double");
return;
}
CV_Assert(src.cols >= blockSize / 2 && src.rows >= blockSize / 2);
CV_Assert(borderType == cv::BORDER_CONSTANT || borderType == cv::BORDER_REFLECT101 || borderType == cv::BORDER_REPLICATE || borderType == cv::BORDER_REFLECT);
extractCovData(src, dx, dy, blockSize, ksize, borderType);
dst.create(src.size(), CV_32F);
corner_ocl(&imgproc_calcMinEigenVal, "calcMinEigenVal", blockSize, 0, dx, dy, dst, borderType);
}
/////////////////////////////////// MeanShiftfiltering ///////////////////////////////////////////////
static void meanShiftFiltering_gpu(const oclMat &src, oclMat dst, int sp, int sr, int maxIter, float eps)
{
CV_Assert( (src.cols == dst.cols) && (src.rows == dst.rows) );
CV_Assert( !(dst.step & 0x3) );
//Arrange the NDRange
int col = src.cols, row = src.rows;
int ltx = 16, lty = 8;
if (src.cols % ltx != 0)
col = (col / ltx + 1) * ltx;
if (src.rows % lty != 0)
row = (row / lty + 1) * lty;
size_t globalThreads[3] = {col, row, 1};
size_t localThreads[3] = {ltx, lty, 1};
//set args
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.step ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sp ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sr ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&maxIter ));
args.push_back( make_pair( sizeof(cl_float) , (void *)&eps ));
openCLExecuteKernel(src.clCxt, &meanShift, "meanshift_kernel", globalThreads, localThreads, args, -1, -1);
}
void meanShiftFiltering(const oclMat &src, oclMat &dst, int sp, int sr, TermCriteria criteria)
{
if ( src.empty() )
CV_Error( CV_StsBadArg, "The input image is empty" );
if ( src.depth() != CV_8U || src.oclchannels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
dst.create( src.size(), CV_8UC4 );
if ( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
float eps;
if ( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
eps = (float)std::max(criteria.epsilon, 0.0);
meanShiftFiltering_gpu(src, dst, sp, sr, maxIter, eps);
}
static void meanShiftProc_gpu(const oclMat &src, oclMat dstr, oclMat dstsp, int sp, int sr, int maxIter, float eps)
{
//sanity checks
CV_Assert( (src.cols == dstr.cols) && (src.rows == dstr.rows) &&
(src.rows == dstsp.rows) && (src.cols == dstsp.cols));
CV_Assert( !(dstsp.step & 0x3) );
//Arrange the NDRange
int col = src.cols, row = src.rows;
int ltx = 16, lty = 8;
if (src.cols % ltx != 0)
col = (col / ltx + 1) * ltx;
if (src.rows % lty != 0)
row = (row / lty + 1) * lty;
size_t globalThreads[3] = {col, row, 1};
size_t localThreads[3] = {ltx, lty, 1};
//set args
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem) , (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dstr.data ));
args.push_back( make_pair( sizeof(cl_mem) , (void *)&dstsp.data ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstsp.step ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&src.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstsp.offset ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.cols ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&dstr.rows ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sp ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&sr ));
args.push_back( make_pair( sizeof(cl_int) , (void *)&maxIter ));
args.push_back( make_pair( sizeof(cl_float) , (void *)&eps ));
openCLExecuteKernel(src.clCxt, &meanShift, "meanshiftproc_kernel", globalThreads, localThreads, args, -1, -1);
}
void meanShiftProc(const oclMat &src, oclMat &dstr, oclMat &dstsp, int sp, int sr, TermCriteria criteria)
{
if ( src.empty() )
CV_Error( CV_StsBadArg, "The input image is empty" );
if ( src.depth() != CV_8U || src.oclchannels() != 4 )
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
// if (!src.clCxt->supportsFeature(FEATURE_CL_DOUBLE))
// {
// CV_Error( CV_OpenCLDoubleNotSupportedNotSupported, "Selected device doesn't support double, so a deviation exists.\nIf the accuracy is acceptable, the error can be ignored.\n");
// return;
// }
dstr.create( src.size(), CV_8UC4 );
dstsp.create( src.size(), CV_16SC2 );
if ( !(criteria.type & TermCriteria::MAX_ITER) )
criteria.maxCount = 5;
int maxIter = std::min(std::max(criteria.maxCount, 1), 100);
float eps;
if ( !(criteria.type & TermCriteria::EPS) )
eps = 1.f;
eps = (float)std::max(criteria.epsilon, 0.0);
meanShiftProc_gpu(src, dstr, dstsp, sp, sr, maxIter, eps);
}
///////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////hist///////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////
namespace histograms
{
const int PARTIAL_HISTOGRAM256_COUNT = 256;
const int HISTOGRAM256_BIN_COUNT = 256;
}
///////////////////////////////calcHist/////////////////////////////////////////////////////////////////
static void calc_sub_hist(const oclMat &mat_src, const oclMat &mat_sub_hist)
{
using namespace histograms;
int depth = mat_src.depth();
size_t localThreads[3] = { HISTOGRAM256_BIN_COUNT, 1, 1 };
size_t globalThreads[3] = { PARTIAL_HISTOGRAM256_COUNT *localThreads[0], 1, 1};
int dataWidth = 16;
int dataWidth_bits = 4;
int mask = dataWidth - 1;
int cols = mat_src.cols * mat_src.oclchannels();
int src_offset = mat_src.offset;
int hist_step = mat_sub_hist.step >> 2;
int left_col = 0, right_col = 0;
if (cols >= dataWidth * 2 - 1)
{
left_col = dataWidth - (src_offset & mask);
left_col &= mask;
src_offset += left_col;
cols -= left_col;
right_col = cols & mask;
cols -= right_col;
}
else
{
left_col = cols;
right_col = 0;
cols = 0;
globalThreads[0] = 0;
}
vector<pair<size_t , const void *> > args;
if (globalThreads[0] != 0)
{
int tempcols = cols >> dataWidth_bits;
int inc_x = globalThreads[0] % tempcols;
int inc_y = globalThreads[0] / tempcols;
src_offset >>= dataWidth_bits;
int src_step = mat_src.step >> dataWidth_bits;
int datacount = tempcols * mat_src.rows;
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&datacount));
args.push_back( make_pair( sizeof(cl_int), (void *)&tempcols));
args.push_back( make_pair( sizeof(cl_int), (void *)&inc_x));
args.push_back( make_pair( sizeof(cl_int), (void *)&inc_y));
args.push_back( make_pair( sizeof(cl_int), (void *)&hist_step));
openCLExecuteKernel(mat_src.clCxt, &imgproc_histogram, "calc_sub_hist", globalThreads, localThreads, args, -1, depth);
}
if (left_col != 0 || right_col != 0)
{
src_offset = mat_src.offset;
localThreads[0] = 1;
localThreads[1] = 256;
globalThreads[0] = left_col + right_col;
globalThreads[1] = mat_src.rows;
args.clear();
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_sub_hist.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&left_col));
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
args.push_back( make_pair( sizeof(cl_int), (void *)&hist_step));
openCLExecuteKernel(mat_src.clCxt, &imgproc_histogram, "calc_sub_hist_border", globalThreads, localThreads, args, -1, depth);
}
}
static void merge_sub_hist(const oclMat &sub_hist, oclMat &mat_hist)
{
using namespace histograms;
size_t localThreads[3] = { 256, 1, 1 };
size_t globalThreads[3] = { HISTOGRAM256_BIN_COUNT *localThreads[0], 1, 1};
int src_step = sub_hist.step >> 2;
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&sub_hist.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_hist.data));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step));
openCLExecuteKernel(sub_hist.clCxt, &imgproc_histogram, "merge_hist", globalThreads, localThreads, args, -1, -1);
}
void calcHist(const oclMat &mat_src, oclMat &mat_hist)
{
using namespace histograms;
CV_Assert(mat_src.type() == CV_8UC1);
mat_hist.create(1, 256, CV_32SC1);
oclMat buf(PARTIAL_HISTOGRAM256_COUNT, HISTOGRAM256_BIN_COUNT, CV_32SC1);
buf.setTo(0);
calc_sub_hist(mat_src, buf);
merge_sub_hist(buf, mat_hist);
}
///////////////////////////////////equalizeHist/////////////////////////////////////////////////////
void equalizeHist(const oclMat &mat_src, oclMat &mat_dst)
{
mat_dst.create(mat_src.rows, mat_src.cols, CV_8UC1);
oclMat mat_hist(1, 256, CV_32SC1);
calcHist(mat_src, mat_hist);
size_t localThreads[3] = { 256, 1, 1};
size_t globalThreads[3] = { 256, 1, 1};
oclMat lut(1, 256, CV_8UC1);
int total = mat_src.rows * mat_src.cols;
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&lut.data));
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_hist.data));
args.push_back( make_pair( sizeof(int), (void *)&total));
openCLExecuteKernel(mat_src.clCxt, &imgproc_histogram, "calLUT", globalThreads, localThreads, args, -1, -1);
LUT(mat_src, lut, mat_dst);
}
////////////////////////////////////////////////////////////////////////
// CLAHE
namespace clahe
{
static void calcLut(const oclMat &src, oclMat &dst,
const int tilesX, const int tilesY, const cv::Size tileSize,
const int clipLimit, const float lutScale)
{
cl_int2 tile_size;
tile_size.s[0] = tileSize.width;
tile_size.s[1] = tileSize.height;
std::vector<pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&clipLimit ));
args.push_back( std::make_pair( sizeof(cl_float), (void *)&lutScale ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset ));
String kernelName = "calcLut";
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 };
bool is_cpu = isCpuDevice();
if (is_cpu)
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, (char*)"-D CPU");
else
{
cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &imgproc_clahe, kernelName);
int wave_size = (int)queryWaveFrontSize(kernel);
openCLSafeCall(clReleaseKernel(kernel));
std::string opt = format("-D WAVE_SIZE=%d", wave_size);
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, kernelName, globalThreads, localThreads, args, -1, -1, opt.c_str());
}
}
static void transform(const oclMat &src, oclMat &dst, const oclMat &lut,
const int tilesX, const int tilesY, const Size & tileSize)
{
cl_int2 tile_size;
tile_size.s[0] = tileSize.width;
tile_size.s[1] = tileSize.height;
std::vector<pair<size_t , const void *> > args;
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&lut.data ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.step ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.cols ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.rows ));
args.push_back( std::make_pair( sizeof(cl_int2), (void *)&tile_size ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesX ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&tilesY ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&src.offset ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dst.offset ));
args.push_back( std::make_pair( sizeof(cl_int), (void *)&lut.offset ));
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { src.cols, src.rows, 1 };
openCLExecuteKernel(Context::getContext(), &imgproc_clahe, "transform", globalThreads, localThreads, args, -1, -1);
}
}
namespace
{
class CLAHE_Impl : public cv::CLAHE
{
public:
CLAHE_Impl(double clipLimit = 40.0, int tilesX = 8, int tilesY = 8);
cv::AlgorithmInfo* info() const;
void apply(cv::InputArray src, cv::OutputArray dst);
void setClipLimit(double clipLimit);
double getClipLimit() const;
void setTilesGridSize(cv::Size tileGridSize);
cv::Size getTilesGridSize() const;
void collectGarbage();
private:
double clipLimit_;
int tilesX_;
int tilesY_;
oclMat srcExt_;
oclMat lut_;
};
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
clipLimit_(clipLimit), tilesX_(tilesX), tilesY_(tilesY)
{
}
CV_INIT_ALGORITHM(CLAHE_Impl, "CLAHE_OCL",
obj.info()->addParam(obj, "clipLimit", obj.clipLimit_);
obj.info()->addParam(obj, "tilesX", obj.tilesX_);
obj.info()->addParam(obj, "tilesY", obj.tilesY_))
void CLAHE_Impl::apply(cv::InputArray src_raw, cv::OutputArray dst_raw)
{
oclMat& src = getOclMatRef(src_raw);
oclMat& dst = getOclMatRef(dst_raw);
CV_Assert( src.type() == CV_8UC1 );
dst.create( src.size(), src.type() );
const int histSize = 256;
ensureSizeIsEnough(tilesX_ * tilesY_, histSize, CV_8UC1, lut_);
cv::Size tileSize;
oclMat srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0)
{
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_);
srcForLut = src;
}
else
{
ocl::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0,
tilesX_ - (src.cols % tilesX_), BORDER_REFLECT_101, Scalar::all(0));
tileSize = Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_);
srcForLut = srcExt_;
}
const int tileSizeTotal = tileSize.area();
const float lutScale = static_cast<float>(histSize - 1) / tileSizeTotal;
int clipLimit = 0;
if (clipLimit_ > 0.0)
{
clipLimit = static_cast<int>(clipLimit_ * tileSizeTotal / histSize);
clipLimit = std::max(clipLimit, 1);
}
clahe::calcLut(srcForLut, lut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale);
clahe::transform(src, dst, lut_, tilesX_, tilesY_, tileSize);
}
void CLAHE_Impl::setClipLimit(double clipLimit)
{
clipLimit_ = clipLimit;
}
double CLAHE_Impl::getClipLimit() const
{
return clipLimit_;
}
void CLAHE_Impl::setTilesGridSize(cv::Size tileGridSize)
{
tilesX_ = tileGridSize.width;
tilesY_ = tileGridSize.height;
}
cv::Size CLAHE_Impl::getTilesGridSize() const
{
return cv::Size(tilesX_, tilesY_);
}
void CLAHE_Impl::collectGarbage()
{
srcExt_.release();
lut_.release();
}
}
cv::Ptr<cv::CLAHE> createCLAHE(double clipLimit, cv::Size tileGridSize)
{
return new CLAHE_Impl(clipLimit, tileGridSize.width, tileGridSize.height);
}
//////////////////////////////////bilateralFilter////////////////////////////////////////////////////
static void oclbilateralFilter_8u( const oclMat &src, oclMat &dst, int d,
double sigma_color, double sigma_space,
int borderType )
{
int cn = src.channels();
int i, j, maxk, radius;
CV_Assert( (src.channels() == 1 || src.channels() == 3) &&
src.type() == dst.type() && src.size() == dst.size() &&
src.data != dst.data );
if ( sigma_color <= 0 )
sigma_color = 1;
if ( sigma_space <= 0 )
sigma_space = 1;
double gauss_color_coeff = -0.5 / (sigma_color * sigma_color);
double gauss_space_coeff = -0.5 / (sigma_space * sigma_space);
if ( d <= 0 )
radius = cvRound(sigma_space * 1.5);
else
radius = d / 2;
radius = MAX(radius, 1);
d = radius * 2 + 1;
oclMat temp;
copyMakeBorder( src, temp, radius, radius, radius, radius, borderType );
vector<float> _color_weight(cn * 256);
vector<float> _space_weight(d * d);
vector<int> _space_ofs(d * d);
float *color_weight = &_color_weight[0];
float *space_weight = &_space_weight[0];
int *space_ofs = &_space_ofs[0];
int dst_step_in_pixel = dst.step / dst.elemSize();
int dst_offset_in_pixel = dst.offset / dst.elemSize();
int temp_step_in_pixel = temp.step / temp.elemSize();
// initialize color-related bilateral filter coefficients
for( i = 0; i < 256 * cn; i++ )
color_weight[i] = (float)std::exp(i * i * gauss_color_coeff);
// initialize space-related bilateral filter coefficients
for( i = -radius, maxk = 0; i <= radius; i++ )
for( j = -radius; j <= radius; j++ )
{
double r = std::sqrt((double)i * i + (double)j * j);
if ( r > radius )
continue;
space_weight[maxk] = (float)std::exp(r * r * gauss_space_coeff);
space_ofs[maxk++] = (int)(i * temp_step_in_pixel + j);
}
oclMat oclcolor_weight(1, cn * 256, CV_32FC1, color_weight);
oclMat oclspace_weight(1, d * d, CV_32FC1, space_weight);
oclMat oclspace_ofs(1, d * d, CV_32SC1, space_ofs);
string kernelName = "bilateral";
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
if ((dst.type() == CV_8UC1) && ((dst.offset & 3) == 0) && ((dst.cols & 3) == 0))
{
kernelName = "bilateral2";
globalThreads[0] = dst.cols >> 2;
}
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&temp.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&maxk ));
args.push_back( make_pair( sizeof(cl_int), (void *)&radius ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset_in_pixel ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp_step_in_pixel ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp.cols ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&oclcolor_weight.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&oclspace_weight.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&oclspace_ofs.data ));
openCLExecuteKernel(src.clCxt, &imgproc_bilateral, kernelName, globalThreads, localThreads, args, dst.oclchannels(), dst.depth());
}
void bilateralFilter(const oclMat &src, oclMat &dst, int radius, double sigmaclr, double sigmaspc, int borderType)
{
dst.create( src.size(), src.type() );
if ( src.depth() == CV_8U )
oclbilateralFilter_8u( src, dst, radius, sigmaclr, sigmaspc, borderType );
else
CV_Error( CV_StsUnsupportedFormat, "Bilateral filtering is only implemented for CV_8U images" );
}
}
}
//////////////////////////////////convolve////////////////////////////////////////////////////
static void convolve_run(const oclMat &src, const oclMat &temp1, oclMat &dst, string kernelName, const cv::ocl::ProgramEntry* source)
{
dst.create(src.size(), src.type());
size_t localThreads[3] = { 16, 16, 1 };
size_t globalThreads[3] = { dst.cols, dst.rows, 1 };
int src_step = src.step / src.elemSize(), src_offset = src.offset / src.elemSize();
int dst_step = dst.step / dst.elemSize(), dst_offset = dst.offset / dst.elemSize();
int temp1_step = temp1.step / temp1.elemSize(), temp1_offset = temp1.offset / temp1.elemSize();
vector<pair<size_t , const void *> > args;
args.push_back( make_pair( sizeof(cl_mem), (void *)&src.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&temp1.data ));
args.push_back( make_pair( sizeof(cl_mem), (void *)&dst.data ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1_step ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1.rows ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1.cols ));
args.push_back( make_pair( sizeof(cl_int), (void *)&src_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_offset ));
args.push_back( make_pair( sizeof(cl_int), (void *)&temp1_offset ));
openCLExecuteKernel(src.clCxt, source, kernelName, globalThreads, localThreads, args, -1, dst.depth());
}
void cv::ocl::convolve(const oclMat &x, const oclMat &t, oclMat &y)
{
CV_Assert(x.depth() == CV_32F && t.depth() == CV_32F);
CV_Assert(t.cols <= 17 && t.rows <= 17);
y.create(x.size(), x.type());
convolve_run(x, t, y, "convolve", &imgproc_convolve);
}