150 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			150 lines
		
	
	
		
			3.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/* This sample demonstrates working on one piece of data using two GPUs.
 | 
						|
   It splits input into two parts and processes them separately on different
 | 
						|
   GPUs. */
 | 
						|
 | 
						|
// Disable some warnings which are caused with CUDA headers
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#pragma warning(disable: 4201 4408 4100)
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include "cvconfig.h"
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
#include "opencv2/highgui/highgui.hpp"
 | 
						|
#include "opencv2/gpu/gpu.hpp"
 | 
						|
 | 
						|
#if !defined(HAVE_CUDA) || !defined(HAVE_TBB)
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
#if !defined(HAVE_CUDA)
 | 
						|
    std::cout << "CUDA support is required (CMake key 'WITH_CUDA' must be true).\n";
 | 
						|
#endif
 | 
						|
 | 
						|
#if !defined(HAVE_TBB)
 | 
						|
    std::cout << "TBB support is required (CMake key 'WITH_TBB' must be true).\n";
 | 
						|
#endif
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
#include "opencv2/core/internal.hpp" // For TBB wrappers
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
using namespace cv::gpu;
 | 
						|
 | 
						|
struct Worker { void operator()(int device_id) const; };
 | 
						|
 | 
						|
// GPUs data
 | 
						|
GpuMat d_left[2];
 | 
						|
GpuMat d_right[2];
 | 
						|
StereoBM_GPU* bm[2];
 | 
						|
GpuMat d_result[2];
 | 
						|
 | 
						|
static void printHelp()
 | 
						|
{
 | 
						|
    std::cout << "Usage: stereo_multi_gpu --left <image> --right <image>\n";
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char** argv)
 | 
						|
{
 | 
						|
    if (argc < 5)
 | 
						|
    {
 | 
						|
        printHelp();
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    int num_devices = getCudaEnabledDeviceCount();
 | 
						|
    if (num_devices < 2)
 | 
						|
    {
 | 
						|
        std::cout << "Two or more GPUs are required\n";
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    for (int i = 0; i < num_devices; ++i)
 | 
						|
    {
 | 
						|
        cv::gpu::printShortCudaDeviceInfo(i);
 | 
						|
 | 
						|
        DeviceInfo dev_info(i);
 | 
						|
        if (!dev_info.isCompatible())
 | 
						|
        {
 | 
						|
            std::cout << "GPU module isn't built for GPU #" << i << " ("
 | 
						|
                 << dev_info.name() << ", CC " << dev_info.majorVersion()
 | 
						|
                 << dev_info.minorVersion() << "\n";
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Load input data
 | 
						|
    Mat left, right;
 | 
						|
    for (int i = 1; i < argc; ++i)
 | 
						|
    {
 | 
						|
        if (string(argv[i]) == "--left")
 | 
						|
        {
 | 
						|
            left = imread(argv[++i], CV_LOAD_IMAGE_GRAYSCALE);
 | 
						|
            CV_Assert(!left.empty());
 | 
						|
        }
 | 
						|
        else if (string(argv[i]) == "--right")
 | 
						|
        {
 | 
						|
            right = imread(argv[++i], CV_LOAD_IMAGE_GRAYSCALE);
 | 
						|
            CV_Assert(!right.empty());
 | 
						|
        }
 | 
						|
        else if (string(argv[i]) == "--help")
 | 
						|
        {
 | 
						|
            printHelp();
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // Split source images for processing on the GPU #0
 | 
						|
    setDevice(0);
 | 
						|
    d_left[0].upload(left.rowRange(0, left.rows / 2));
 | 
						|
    d_right[0].upload(right.rowRange(0, right.rows / 2));
 | 
						|
    bm[0] = new StereoBM_GPU();
 | 
						|
 | 
						|
    // Split source images for processing on the GPU #1
 | 
						|
    setDevice(1);
 | 
						|
    d_left[1].upload(left.rowRange(left.rows / 2, left.rows));
 | 
						|
    d_right[1].upload(right.rowRange(right.rows / 2, right.rows));
 | 
						|
    bm[1] = new StereoBM_GPU();
 | 
						|
 | 
						|
    // Execute calculation in two threads using two GPUs
 | 
						|
    int devices[] = {0, 1};
 | 
						|
    parallel_do(devices, devices + 2, Worker());
 | 
						|
 | 
						|
    // Release the first GPU resources
 | 
						|
    setDevice(0);
 | 
						|
    imshow("GPU #0 result", Mat(d_result[0]));
 | 
						|
    d_left[0].release();
 | 
						|
    d_right[0].release();
 | 
						|
    d_result[0].release();
 | 
						|
    delete bm[0];
 | 
						|
 | 
						|
    // Release the second GPU resources
 | 
						|
    setDevice(1);
 | 
						|
    imshow("GPU #1 result", Mat(d_result[1]));
 | 
						|
    d_left[1].release();
 | 
						|
    d_right[1].release();
 | 
						|
    d_result[1].release();
 | 
						|
    delete bm[1];
 | 
						|
 | 
						|
    waitKey();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Worker::operator()(int device_id) const
 | 
						|
{
 | 
						|
    setDevice(device_id);
 | 
						|
 | 
						|
    bm[device_id]->operator()(d_left[device_id], d_right[device_id],
 | 
						|
                              d_result[device_id]);
 | 
						|
 | 
						|
    std::cout << "GPU #" << device_id << " (" << DeviceInfo().name()
 | 
						|
        << "): finished\n";
 | 
						|
}
 | 
						|
 | 
						|
#endif
 |