opencv/modules/calib3d/src/modelest.cpp

486 lines
14 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "_modelest.h"
#include <algorithm>
#include <iterator>
#include <limits>
using namespace std;
CvModelEstimator2::CvModelEstimator2(int _modelPoints, CvSize _modelSize, int _maxBasicSolutions)
{
modelPoints = _modelPoints;
modelSize = _modelSize;
maxBasicSolutions = _maxBasicSolutions;
checkPartialSubsets = true;
rng = cvRNG(-1);
}
CvModelEstimator2::~CvModelEstimator2()
{
}
void CvModelEstimator2::setSeed( int64 seed )
{
rng = cvRNG(seed);
}
int CvModelEstimator2::findInliers( const CvMat* m1, const CvMat* m2,
const CvMat* model, CvMat* _err,
CvMat* _mask, double threshold )
{
int i, count = _err->rows*_err->cols, goodCount = 0;
const float* err = _err->data.fl;
uchar* mask = _mask->data.ptr;
computeReprojError( m1, m2, model, _err );
threshold *= threshold;
for( i = 0; i < count; i++ )
goodCount += mask[i] = err[i] <= threshold;
return goodCount;
}
CV_IMPL int
cvRANSACUpdateNumIters( double p, double ep,
int model_points, int max_iters )
{
if( model_points <= 0 )
CV_Error( CV_StsOutOfRange, "the number of model points should be positive" );
p = MAX(p, 0.);
p = MIN(p, 1.);
ep = MAX(ep, 0.);
ep = MIN(ep, 1.);
// avoid inf's & nan's
double num = MAX(1. - p, DBL_MIN);
double denom = 1. - pow(1. - ep,model_points);
if( denom < DBL_MIN )
return 0;
num = log(num);
denom = log(denom);
return denom >= 0 || -num >= max_iters*(-denom) ?
max_iters : cvRound(num/denom);
}
bool CvModelEstimator2::runRANSAC( const CvMat* m1, const CvMat* m2, CvMat* model,
CvMat* mask0, double reprojThreshold,
double confidence, int maxIters )
{
bool result = false;
cv::Ptr<CvMat> mask = cvCloneMat(mask0);
cv::Ptr<CvMat> models, err, tmask;
cv::Ptr<CvMat> ms1, ms2;
int iter, niters = maxIters;
int count = m1->rows*m1->cols, maxGoodCount = 0;
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
if( count < modelPoints )
return false;
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
err = cvCreateMat( 1, count, CV_32FC1 );
tmask = cvCreateMat( 1, count, CV_8UC1 );
if( count > modelPoints )
{
ms1 = cvCreateMat( 1, modelPoints, m1->type );
ms2 = cvCreateMat( 1, modelPoints, m2->type );
}
else
{
niters = 1;
ms1 = cvCloneMat(m1);
ms2 = cvCloneMat(m2);
}
for( iter = 0; iter < niters; iter++ )
{
int i, goodCount, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, 300 );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = runKernel( ms1, ms2, models );
if( nmodels <= 0 )
continue;
for( i = 0; i < nmodels; i++ )
{
CvMat model_i;
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
goodCount = findInliers( m1, m2, &model_i, err, tmask, reprojThreshold );
if( goodCount > MAX(maxGoodCount, modelPoints-1) )
{
std::swap(tmask, mask);
cvCopy( &model_i, model );
maxGoodCount = goodCount;
niters = cvRANSACUpdateNumIters( confidence,
(double)(count - goodCount)/count, modelPoints, niters );
}
}
}
if( maxGoodCount > 0 )
{
if( mask != mask0 )
cvCopy( mask, mask0 );
result = true;
}
return result;
}
static CV_IMPLEMENT_QSORT( icvSortDistances, int, CV_LT )
bool CvModelEstimator2::runLMeDS( const CvMat* m1, const CvMat* m2, CvMat* model,
CvMat* mask, double confidence, int maxIters )
{
const double outlierRatio = 0.45;
bool result = false;
cv::Ptr<CvMat> models;
cv::Ptr<CvMat> ms1, ms2;
cv::Ptr<CvMat> err;
int iter, niters = maxIters;
int count = m1->rows*m1->cols;
double minMedian = DBL_MAX, sigma;
CV_Assert( CV_ARE_SIZES_EQ(m1, m2) && CV_ARE_SIZES_EQ(m1, mask) );
if( count < modelPoints )
return false;
models = cvCreateMat( modelSize.height*maxBasicSolutions, modelSize.width, CV_64FC1 );
err = cvCreateMat( 1, count, CV_32FC1 );
if( count > modelPoints )
{
ms1 = cvCreateMat( 1, modelPoints, m1->type );
ms2 = cvCreateMat( 1, modelPoints, m2->type );
}
else
{
niters = 1;
ms1 = cvCloneMat(m1);
ms2 = cvCloneMat(m2);
}
niters = cvRound(log(1-confidence)/log(1-pow(1-outlierRatio,(double)modelPoints)));
niters = MIN( MAX(niters, 3), maxIters );
for( iter = 0; iter < niters; iter++ )
{
int i, nmodels;
if( count > modelPoints )
{
bool found = getSubset( m1, m2, ms1, ms2, 300 );
if( !found )
{
if( iter == 0 )
return false;
break;
}
}
nmodels = runKernel( ms1, ms2, models );
if( nmodels <= 0 )
continue;
for( i = 0; i < nmodels; i++ )
{
CvMat model_i;
cvGetRows( models, &model_i, i*modelSize.height, (i+1)*modelSize.height );
computeReprojError( m1, m2, &model_i, err );
icvSortDistances( err->data.i, count, 0 );
double median = count % 2 != 0 ?
err->data.fl[count/2] : (err->data.fl[count/2-1] + err->data.fl[count/2])*0.5;
if( median < minMedian )
{
minMedian = median;
cvCopy( &model_i, model );
}
}
}
if( minMedian < DBL_MAX )
{
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*sqrt(minMedian);
sigma = MAX( sigma, 0.001 );
count = findInliers( m1, m2, model, err, mask, sigma );
result = count >= modelPoints;
}
return result;
}
bool CvModelEstimator2::getSubset( const CvMat* m1, const CvMat* m2,
CvMat* ms1, CvMat* ms2, int maxAttempts )
{
cv::AutoBuffer<int> _idx(modelPoints);
int* idx = _idx;
int i = 0, j, k, idx_i, iters = 0;
int type = CV_MAT_TYPE(m1->type), elemSize = CV_ELEM_SIZE(type);
const int *m1ptr = m1->data.i, *m2ptr = m2->data.i;
int *ms1ptr = ms1->data.i, *ms2ptr = ms2->data.i;
int count = m1->cols*m1->rows;
assert( CV_IS_MAT_CONT(m1->type & m2->type) && (elemSize % sizeof(int) == 0) );
elemSize /= sizeof(int);
for(; iters < maxAttempts; iters++)
{
for( i = 0; i < modelPoints && iters < maxAttempts; )
{
idx[i] = idx_i = cvRandInt(&rng) % count;
for( j = 0; j < i; j++ )
if( idx_i == idx[j] )
break;
if( j < i )
continue;
for( k = 0; k < elemSize; k++ )
{
ms1ptr[i*elemSize + k] = m1ptr[idx_i*elemSize + k];
ms2ptr[i*elemSize + k] = m2ptr[idx_i*elemSize + k];
}
if( checkPartialSubsets && (!checkSubset( ms1, i+1 ) || !checkSubset( ms2, i+1 )))
{
iters++;
continue;
}
i++;
}
if( !checkPartialSubsets && i == modelPoints &&
(!checkSubset( ms1, i ) || !checkSubset( ms2, i )))
continue;
break;
}
return i == modelPoints && iters < maxAttempts;
}
bool CvModelEstimator2::checkSubset( const CvMat* m, int count )
{
int j, k, i, i0, i1;
CvPoint2D64f* ptr = (CvPoint2D64f*)m->data.ptr;
assert( CV_MAT_TYPE(m->type) == CV_64FC2 );
if( checkPartialSubsets )
i0 = i1 = count - 1;
else
i0 = 0, i1 = count - 1;
for( i = i0; i <= i1; i++ )
{
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for( j = 0; j < i; j++ )
{
double dx1 = ptr[j].x - ptr[i].x;
double dy1 = ptr[j].y - ptr[i].y;
for( k = 0; k < j; k++ )
{
double dx2 = ptr[k].x - ptr[i].x;
double dy2 = ptr[k].y - ptr[i].y;
if( fabs(dx2*dy1 - dy2*dx1) <= FLT_EPSILON*(fabs(dx1) + fabs(dy1) + fabs(dx2) + fabs(dy2)))
break;
}
if( k < j )
break;
}
if( j < i )
break;
}
return i >= i1;
}
namespace cv
{
class Affine3DEstimator : public CvModelEstimator2
{
public:
Affine3DEstimator() : CvModelEstimator2(4, cvSize(4, 3), 1) {}
virtual int runKernel( const CvMat* m1, const CvMat* m2, CvMat* model );
protected:
virtual void computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error );
virtual bool checkSubset( const CvMat* ms1, int count );
};
}
int cv::Affine3DEstimator::runKernel( const CvMat* m1, const CvMat* m2, CvMat* model )
{
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr);
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr);
Mat A(12, 12, CV_64F);
Mat B(12, 1, CV_64F);
A = Scalar(0.0);
for(int i = 0; i < modelPoints; ++i)
{
*B.ptr<Point3d>(3*i) = to[i];
double *aptr = A.ptr<double>(3*i);
for(int k = 0; k < 3; ++k)
{
aptr[3] = 1.0;
*reinterpret_cast<Point3d*>(aptr) = from[i];
aptr += 16;
}
}
CvMat cvA = A;
CvMat cvB = B;
CvMat cvX;
cvReshape(model, &cvX, 1, 12);
cvSolve(&cvA, &cvB, &cvX, CV_SVD );
return 1;
}
void cv::Affine3DEstimator::computeReprojError( const CvMat* m1, const CvMat* m2, const CvMat* model, CvMat* error )
{
int count = m1->rows * m1->cols;
const Point3d* from = reinterpret_cast<const Point3d*>(m1->data.ptr);
const Point3d* to = reinterpret_cast<const Point3d*>(m2->data.ptr);
const double* F = model->data.db;
float* err = error->data.fl;
for(int i = 0; i < count; i++ )
{
const Point3d& f = from[i];
const Point3d& t = to[i];
double a = F[0]*f.x + F[1]*f.y + F[ 2]*f.z + F[ 3] - t.x;
double b = F[4]*f.x + F[5]*f.y + F[ 6]*f.z + F[ 7] - t.y;
double c = F[8]*f.x + F[9]*f.y + F[10]*f.z + F[11] - t.z;
err[i] = (float)sqrt(a*a + b*b + c*c);
}
}
bool cv::Affine3DEstimator::checkSubset( const CvMat* ms1, int count )
{
CV_Assert( CV_MAT_TYPE(ms1->type) == CV_64FC3 );
int j, k, i = count - 1;
const Point3d* ptr = reinterpret_cast<const Point3d*>(ms1->data.ptr);
// check that the i-th selected point does not belong
// to a line connecting some previously selected points
for(j = 0; j < i; ++j)
{
Point3d d1 = ptr[j] - ptr[i];
double n1 = norm(d1);
for(k = 0; k < j; ++k)
{
Point3d d2 = ptr[k] - ptr[i];
double n = norm(d2) * n1;
if (fabs(d1.dot(d2) / n) > 0.996)
break;
}
if( k < j )
break;
}
return j == i;
}
int cv::estimateAffine3D(const InputArray& _from, const InputArray& _to,
OutputArray _out, OutputArray _outliers,
double param1, double param2)
{
Mat from = _from.getMat(), to = _to.getMat();
int count = from.checkVector(3, CV_32F);
CV_Assert( count >= 0 && to.checkVector(3, CV_32F) == count );
_out.create(3, 4, CV_64F);
Mat out = _out.getMat();
_outliers.create(count, 1, CV_8U, -1, true);
Mat outliers = _outliers.getMat();
outliers = Scalar::all(1);
Mat dFrom, dTo;
from.convertTo(dFrom, CV_64F);
to.convertTo(dTo, CV_64F);
CvMat F3x4 = out;
CvMat mask = outliers;
CvMat m1 = dFrom;
CvMat m2 = dTo;
const double epsilon = numeric_limits<double>::epsilon();
param1 = param1 <= 0 ? 3 : param1;
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
return Affine3DEstimator().runRANSAC(&m1, &m2, &F3x4, &mask, param1, param2 );
}