504 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
			
		
		
	
	
			504 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
	
	
| Camera Calibration and 3D Reconstruction
 | |
| ========================================
 | |
| 
 | |
| .. highlight:: cpp
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBM_GPU
 | |
| -----------------
 | |
| .. ocv:class:: gpu::StereoBM_GPU
 | |
| 
 | |
| Class computing stereo correspondence (disparity map) using the block matching algorithm. ::
 | |
| 
 | |
|     class StereoBM_GPU
 | |
|     {
 | |
|     public:
 | |
|         enum { BASIC_PRESET = 0, PREFILTER_XSOBEL = 1 };
 | |
| 
 | |
|         enum { DEFAULT_NDISP = 64, DEFAULT_WINSZ = 19 };
 | |
| 
 | |
|         StereoBM_GPU();
 | |
|         StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP,
 | |
|                      int winSize = DEFAULT_WINSZ);
 | |
| 
 | |
|         void operator() (const GpuMat& left, const GpuMat& right,
 | |
|                          GpuMat& disparity, Stream& stream = Stream::Null());
 | |
| 
 | |
|         static bool checkIfGpuCallReasonable();
 | |
| 
 | |
|         int preset;
 | |
|         int ndisp;
 | |
|         int winSize;
 | |
| 
 | |
|         float avergeTexThreshold;
 | |
| 
 | |
|         ...
 | |
|     };
 | |
| 
 | |
| 
 | |
| The class also performs pre- and post-filtering steps: Sobel pre-filtering (if ``PREFILTER_XSOBEL`` flag is set) and low textureness filtering (if ``averageTexThreshols > 0`` ). If ``avergeTexThreshold = 0`` , low textureness filtering is disabled. Otherwise, the disparity is set to 0 in each point ``(x, y)`` , where for the left image
 | |
| 
 | |
| .. math::
 | |
|     \sum HorizontalGradiensInWindow(x, y, winSize) < (winSize \cdot winSize) \cdot avergeTexThreshold
 | |
| 
 | |
| This means that the input left image is low textured.
 | |
| 
 | |
| .. note::
 | |
| 
 | |
|    * A basic stereo matching example can be found at opencv_source_code/samples/gpu/stereo_match.cpp
 | |
|    * A stereo matching example using several GPU's can be found at opencv_source_code/samples/gpu/stereo_multi.cpp
 | |
|    * A stereo matching example using several GPU's and driver API can be found at opencv_source_code/samples/gpu/driver_api_stereo_multi.cpp
 | |
| 
 | |
| gpu::StereoBM_GPU::StereoBM_GPU
 | |
| -----------------------------------
 | |
| Enables :ocv:class:`gpu::StereoBM_GPU` constructors.
 | |
| 
 | |
| .. ocv:function:: gpu::StereoBM_GPU::StereoBM_GPU()
 | |
| 
 | |
| .. ocv:function:: gpu::StereoBM_GPU::StereoBM_GPU(int preset, int ndisparities = DEFAULT_NDISP, int winSize = DEFAULT_WINSZ)
 | |
| 
 | |
|     :param preset: Parameter presetting:
 | |
| 
 | |
|         * **BASIC_PRESET** Basic mode without pre-processing.
 | |
| 
 | |
|         * **PREFILTER_XSOBEL** Sobel pre-filtering mode.
 | |
| 
 | |
|     :param ndisparities: Number of disparities. It must be a multiple of 8 and less or equal to 256.
 | |
| 
 | |
|     :param winSize: Block size.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBM_GPU::operator ()
 | |
| ----------------------------------
 | |
| Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair.
 | |
| 
 | |
| .. ocv:function:: void gpu::StereoBM_GPU::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param left: Left image. Only  ``CV_8UC1``  type is supported.
 | |
| 
 | |
|     :param right: Right image with the same size and the same type as the left one.
 | |
| 
 | |
|     :param disparity: Output disparity map. It is a  ``CV_8UC1``  image with the same size as the input images.
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBM_GPU::checkIfGpuCallReasonable
 | |
| -----------------------------------------------
 | |
| Uses a heuristic method to estimate whether the current GPU is faster than the CPU in this algorithm. It queries the currently active device.
 | |
| 
 | |
| .. ocv:function:: bool gpu::StereoBM_GPU::checkIfGpuCallReasonable()
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBeliefPropagation
 | |
| ----------------------------
 | |
| .. ocv:class:: gpu::StereoBeliefPropagation
 | |
| 
 | |
| Class computing stereo correspondence using the belief propagation algorithm. ::
 | |
| 
 | |
|     class StereoBeliefPropagation
 | |
|     {
 | |
|     public:
 | |
|         enum { DEFAULT_NDISP  = 64 };
 | |
|         enum { DEFAULT_ITERS  = 5  };
 | |
|         enum { DEFAULT_LEVELS = 5  };
 | |
| 
 | |
|         static void estimateRecommendedParams(int width, int height,
 | |
|             int& ndisp, int& iters, int& levels);
 | |
| 
 | |
|         explicit StereoBeliefPropagation(int ndisp = DEFAULT_NDISP,
 | |
|             int iters  = DEFAULT_ITERS,
 | |
|             int levels = DEFAULT_LEVELS,
 | |
|             int msg_type = CV_32F);
 | |
|         StereoBeliefPropagation(int ndisp, int iters, int levels,
 | |
|             float max_data_term, float data_weight,
 | |
|             float max_disc_term, float disc_single_jump,
 | |
|             int msg_type = CV_32F);
 | |
| 
 | |
|         void operator()(const GpuMat& left, const GpuMat& right,
 | |
|                         GpuMat& disparity, Stream& stream = Stream::Null());
 | |
|         void operator()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null());
 | |
| 
 | |
|         int ndisp;
 | |
| 
 | |
|         int iters;
 | |
|         int levels;
 | |
| 
 | |
|         float max_data_term;
 | |
|         float data_weight;
 | |
|         float max_disc_term;
 | |
|         float disc_single_jump;
 | |
| 
 | |
|         int msg_type;
 | |
| 
 | |
|         ...
 | |
|     };
 | |
| 
 | |
| The class implements algorithm described in [Felzenszwalb2006]_ . It can compute own data cost (using a truncated linear model) or use a user-provided data cost.
 | |
| 
 | |
| .. note::
 | |
| 
 | |
|     ``StereoBeliefPropagation`` requires a lot of memory for message storage:
 | |
| 
 | |
|     .. math::
 | |
| 
 | |
|         width \_ step  \cdot height  \cdot ndisp  \cdot 4  \cdot (1 + 0.25)
 | |
| 
 | |
|     and for data cost storage:
 | |
| 
 | |
|     .. math::
 | |
| 
 | |
|         width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 +  \dotsm + \frac{1}{4^{levels}})
 | |
| 
 | |
|     ``width_step`` is the number of bytes in a line including padding.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBeliefPropagation::StereoBeliefPropagation
 | |
| ---------------------------------------------------------
 | |
| Enables the :ocv:class:`gpu::StereoBeliefPropagation` constructors.
 | |
| 
 | |
| .. ocv:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int msg_type = CV_32F)
 | |
| 
 | |
| .. ocv:function:: gpu::StereoBeliefPropagation::StereoBeliefPropagation(int ndisp, int iters, int levels, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int msg_type = CV_32F)
 | |
| 
 | |
|     :param ndisp: Number of disparities.
 | |
| 
 | |
|     :param iters: Number of BP iterations on each level.
 | |
| 
 | |
|     :param levels: Number of levels.
 | |
| 
 | |
|     :param max_data_term: Threshold for data cost truncation.
 | |
| 
 | |
|     :param data_weight: Data weight.
 | |
| 
 | |
|     :param max_disc_term: Threshold for discontinuity truncation.
 | |
| 
 | |
|     :param disc_single_jump: Discontinuity single jump.
 | |
| 
 | |
|     :param msg_type: Type for messages.  ``CV_16SC1``  and  ``CV_32FC1`` types are supported.
 | |
| 
 | |
| ``StereoBeliefPropagation`` uses a truncated linear model for the data cost and discontinuity terms:
 | |
| 
 | |
| .. math::
 | |
| 
 | |
|     DataCost = data \_ weight  \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y)  \rvert , max \_ data \_ term)
 | |
| 
 | |
| .. math::
 | |
| 
 | |
|     DiscTerm =  \min (disc \_ single \_ jump  \cdot \lvert f_1-f_2  \rvert , max \_ disc \_ term)
 | |
| 
 | |
| For more details, see [Felzenszwalb2006]_.
 | |
| 
 | |
| By default, :ocv:class:`gpu::StereoBeliefPropagation` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:
 | |
| 
 | |
| .. math::
 | |
| 
 | |
|     10  \cdot 2^{levels-1}  \cdot max \_ data \_ term < SHRT \_ MAX
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBeliefPropagation::estimateRecommendedParams
 | |
| -----------------------------------------------------------
 | |
| Uses a heuristic method to compute the recommended parameters ( ``ndisp``, ``iters`` and ``levels`` ) for the specified image size ( ``width`` and ``height`` ).
 | |
| 
 | |
| .. ocv:function:: void gpu::StereoBeliefPropagation::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels)
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoBeliefPropagation::operator ()
 | |
| ---------------------------------------------
 | |
| Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair or data cost.
 | |
| 
 | |
| .. ocv:function:: void gpu::StereoBeliefPropagation::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null())
 | |
| 
 | |
| .. ocv:function:: void gpu::StereoBeliefPropagation::operator ()(const GpuMat& data, GpuMat& disparity, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param left: Left image. ``CV_8UC1`` , ``CV_8UC3``  and  ``CV_8UC4``  types are supported.
 | |
| 
 | |
|     :param right: Right image with the same size and the same type as the left one.
 | |
| 
 | |
|     :param data: User-specified data cost, a matrix of ``msg_type`` type and ``Size(<image columns>*ndisp, <image rows>)`` size.
 | |
| 
 | |
|     :param disparity: Output disparity map. If  ``disparity``  is empty, the output type is  ``CV_16SC1`` . Otherwise, the type is retained.
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoConstantSpaceBP
 | |
| --------------------------
 | |
| .. ocv:class:: gpu::StereoConstantSpaceBP
 | |
| 
 | |
| Class computing stereo correspondence using the constant space belief propagation algorithm. ::
 | |
| 
 | |
|     class StereoConstantSpaceBP
 | |
|     {
 | |
|     public:
 | |
|         enum { DEFAULT_NDISP    = 128 };
 | |
|         enum { DEFAULT_ITERS    = 8   };
 | |
|         enum { DEFAULT_LEVELS   = 4   };
 | |
|         enum { DEFAULT_NR_PLANE = 4   };
 | |
| 
 | |
|         static void estimateRecommendedParams(int width, int height,
 | |
|             int& ndisp, int& iters, int& levels, int& nr_plane);
 | |
| 
 | |
|         explicit StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP,
 | |
|             int iters    = DEFAULT_ITERS,
 | |
|             int levels   = DEFAULT_LEVELS,
 | |
|             int nr_plane = DEFAULT_NR_PLANE,
 | |
|             int msg_type = CV_32F);
 | |
|         StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane,
 | |
|             float max_data_term, float data_weight,
 | |
|             float max_disc_term, float disc_single_jump,
 | |
|             int min_disp_th = 0,
 | |
|             int msg_type = CV_32F);
 | |
| 
 | |
|         void operator()(const GpuMat& left, const GpuMat& right,
 | |
|                         GpuMat& disparity, Stream& stream = Stream::Null());
 | |
| 
 | |
|         int ndisp;
 | |
| 
 | |
|         int iters;
 | |
|         int levels;
 | |
| 
 | |
|         int nr_plane;
 | |
| 
 | |
|         float max_data_term;
 | |
|         float data_weight;
 | |
|         float max_disc_term;
 | |
|         float disc_single_jump;
 | |
| 
 | |
|         int min_disp_th;
 | |
| 
 | |
|         int msg_type;
 | |
| 
 | |
|         bool use_local_init_data_cost;
 | |
| 
 | |
|         ...
 | |
|     };
 | |
| 
 | |
| 
 | |
| The class implements algorithm described in [Yang2010]_. ``StereoConstantSpaceBP`` supports both local minimum and global minimum data cost initialization algorithms. For more details, see the paper mentioned above. By default, a local algorithm is used. To enable a global algorithm, set ``use_local_init_data_cost`` to ``false`` .
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoConstantSpaceBP::StereoConstantSpaceBP
 | |
| -----------------------------------------------------
 | |
| Enables the :ocv:class:`gpu::StereoConstantSpaceBP` constructors.
 | |
| 
 | |
| .. ocv:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp = DEFAULT_NDISP, int iters = DEFAULT_ITERS, int levels = DEFAULT_LEVELS, int nr_plane = DEFAULT_NR_PLANE, int msg_type = CV_32F)
 | |
| 
 | |
| .. ocv:function:: gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp, int iters, int levels, int nr_plane, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th = 0, int msg_type = CV_32F)
 | |
| 
 | |
|     :param ndisp: Number of disparities.
 | |
| 
 | |
|     :param iters: Number of BP iterations on each level.
 | |
| 
 | |
|     :param levels: Number of levels.
 | |
| 
 | |
|     :param nr_plane: Number of disparity levels on the first level.
 | |
| 
 | |
|     :param max_data_term: Truncation of data cost.
 | |
| 
 | |
|     :param data_weight: Data weight.
 | |
| 
 | |
|     :param max_disc_term: Truncation of discontinuity.
 | |
| 
 | |
|     :param disc_single_jump: Discontinuity single jump.
 | |
| 
 | |
|     :param min_disp_th: Minimal disparity threshold.
 | |
| 
 | |
|     :param msg_type: Type for messages.  ``CV_16SC1``  and  ``CV_32FC1`` types are supported.
 | |
| 
 | |
| ``StereoConstantSpaceBP`` uses a truncated linear model for the data cost and discontinuity terms:
 | |
| 
 | |
| .. math::
 | |
| 
 | |
|     DataCost = data \_ weight  \cdot \min ( \lvert I_2-I_1  \rvert , max \_ data \_ term)
 | |
| 
 | |
| .. math::
 | |
| 
 | |
|     DiscTerm =  \min (disc \_ single \_ jump  \cdot \lvert f_1-f_2  \rvert , max \_ disc \_ term)
 | |
| 
 | |
| For more details, see [Yang2010]_.
 | |
| 
 | |
| By default, ``StereoConstantSpaceBP`` uses floating-point arithmetics and the ``CV_32FC1`` type for messages. But it can also use fixed-point arithmetics and the ``CV_16SC1`` message type for better performance. To avoid an overflow in this case, the parameters must satisfy the following requirement:
 | |
| 
 | |
| .. math::
 | |
| 
 | |
|     10  \cdot 2^{levels-1}  \cdot max \_ data \_ term < SHRT \_ MAX
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoConstantSpaceBP::estimateRecommendedParams
 | |
| ---------------------------------------------------------
 | |
| Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified image size (widthand height).
 | |
| 
 | |
| .. ocv:function:: void gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::StereoConstantSpaceBP::operator ()
 | |
| -------------------------------------------
 | |
| Enables the stereo correspondence operator that finds the disparity for the specified rectified stereo pair.
 | |
| 
 | |
| .. ocv:function:: void gpu::StereoConstantSpaceBP::operator ()(const GpuMat& left, const GpuMat& right, GpuMat& disparity, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param left: Left image. ``CV_8UC1`` , ``CV_8UC3``  and  ``CV_8UC4``  types are supported.
 | |
| 
 | |
|     :param right: Right image with the same size and the same type as the left one.
 | |
| 
 | |
|     :param disparity: Output disparity map. If  ``disparity``  is empty, the output type is  ``CV_16SC1`` . Otherwise, the output type is  ``disparity.type()`` .
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::DisparityBilateralFilter
 | |
| -----------------------------
 | |
| .. ocv:class:: gpu::DisparityBilateralFilter
 | |
| 
 | |
| Class refining a disparity map using joint bilateral filtering. ::
 | |
| 
 | |
|     class CV_EXPORTS DisparityBilateralFilter
 | |
|     {
 | |
|     public:
 | |
|         enum { DEFAULT_NDISP  = 64 };
 | |
|         enum { DEFAULT_RADIUS = 3 };
 | |
|         enum { DEFAULT_ITERS  = 1 };
 | |
| 
 | |
|         explicit DisparityBilateralFilter(int ndisp = DEFAULT_NDISP,
 | |
|             int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS);
 | |
| 
 | |
|         DisparityBilateralFilter(int ndisp, int radius, int iters,
 | |
|             float edge_threshold, float max_disc_threshold,
 | |
|             float sigma_range);
 | |
| 
 | |
|         void operator()(const GpuMat& disparity, const GpuMat& image,
 | |
|                         GpuMat& dst, Stream& stream = Stream::Null());
 | |
| 
 | |
|         ...
 | |
|     };
 | |
| 
 | |
| 
 | |
| The class implements [Yang2010]_ algorithm.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::DisparityBilateralFilter::DisparityBilateralFilter
 | |
| -----------------------------------------------------------
 | |
| Enables the :ocv:class:`gpu::DisparityBilateralFilter` constructors.
 | |
| 
 | |
| .. ocv:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp = DEFAULT_NDISP, int radius = DEFAULT_RADIUS, int iters = DEFAULT_ITERS)
 | |
| 
 | |
| .. ocv:function:: gpu::DisparityBilateralFilter::DisparityBilateralFilter(int ndisp, int radius, int iters, float edge_threshold, float max_disc_threshold, float sigma_range)
 | |
| 
 | |
|     :param ndisp: Number of disparities.
 | |
| 
 | |
|     :param radius: Filter radius.
 | |
| 
 | |
|     :param iters: Number of iterations.
 | |
| 
 | |
|     :param edge_threshold: Threshold for edges.
 | |
| 
 | |
|     :param max_disc_threshold: Constant to reject outliers.
 | |
| 
 | |
|     :param sigma_range: Filter range.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::DisparityBilateralFilter::operator ()
 | |
| ----------------------------------------------
 | |
| Refines a disparity map using joint bilateral filtering.
 | |
| 
 | |
| .. ocv:function:: void gpu::DisparityBilateralFilter::operator ()(const GpuMat& disparity, const GpuMat& image, GpuMat& dst, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param disparity: Input disparity map.  ``CV_8UC1``  and  ``CV_16SC1``  types are supported.
 | |
| 
 | |
|     :param image: Input image. ``CV_8UC1``  and  ``CV_8UC3``  types are supported.
 | |
| 
 | |
|     :param dst: Destination disparity map. It has the same size and type as  ``disparity`` .
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::drawColorDisp
 | |
| ----------------------
 | |
| Colors a disparity image.
 | |
| 
 | |
| .. ocv:function:: void gpu::drawColorDisp(const GpuMat& src_disp, GpuMat& dst_disp, int ndisp, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param src_disp: Source disparity image.  ``CV_8UC1``  and  ``CV_16SC1``  types are supported.
 | |
| 
 | |
|     :param dst_disp: Output disparity image. It has the same size as  ``src_disp`` . The  type is ``CV_8UC4``  in  ``BGRA``  format (alpha = 255).
 | |
| 
 | |
|     :param ndisp: Number of disparities.
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| This function draws a colored disparity map by converting disparity values from ``[0..ndisp)`` interval first to ``HSV`` color space (where different disparity values correspond to different hues) and then converting the pixels to ``RGB`` for visualization.
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::reprojectImageTo3D
 | |
| ---------------------------
 | |
| Reprojects a disparity image to 3D space.
 | |
| 
 | |
| .. ocv:function:: void gpu::reprojectImageTo3D(const GpuMat& disp, GpuMat& xyzw, const Mat& Q, int dst_cn = 4, Stream& stream = Stream::Null())
 | |
| 
 | |
|     :param disp: Input disparity image.  ``CV_8U``  and  ``CV_16S``  types are supported.
 | |
| 
 | |
|     :param xyzw: Output 3- or 4-channel floating-point image of the same size as  ``disp`` . Each element of  ``xyzw(x,y)``  contains 3D coordinates ``(x,y,z)`` or ``(x,y,z,1)``  of the point  ``(x,y)`` , computed from the disparity map.
 | |
| 
 | |
|     :param Q: :math:`4 \times 4`  perspective transformation matrix that can be obtained via  :ocv:func:`stereoRectify` .
 | |
| 
 | |
|     :param dst_cn: The number of channels for output image. Can be 3 or 4.
 | |
| 
 | |
|     :param stream: Stream for the asynchronous version.
 | |
| 
 | |
| .. seealso:: :ocv:func:`reprojectImageTo3D`
 | |
| 
 | |
| 
 | |
| 
 | |
| gpu::solvePnPRansac
 | |
| -------------------
 | |
| Finds the object pose from 3D-2D point correspondences.
 | |
| 
 | |
| .. ocv:function:: void gpu::solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, vector<int>* inliers=NULL)
 | |
| 
 | |
|     :param object: Single-row matrix of object points.
 | |
| 
 | |
|     :param image: Single-row matrix of image points.
 | |
| 
 | |
|     :param camera_mat: 3x3 matrix of intrinsic camera parameters.
 | |
| 
 | |
|     :param dist_coef: Distortion coefficients. See :ocv:func:`undistortPoints` for details.
 | |
| 
 | |
|     :param rvec: Output 3D rotation vector.
 | |
| 
 | |
|     :param tvec: Output 3D translation vector.
 | |
| 
 | |
|     :param use_extrinsic_guess: Flag to indicate that the function must use ``rvec`` and ``tvec`` as an initial transformation guess. It is not supported for now.
 | |
| 
 | |
|     :param num_iters: Maximum number of RANSAC iterations.
 | |
| 
 | |
|     :param max_dist: Euclidean distance threshold to detect whether point is inlier or not.
 | |
| 
 | |
|     :param min_inlier_count: Flag to indicate that the function must stop if greater or equal number of inliers is achieved. It is not supported for now.
 | |
| 
 | |
|     :param inliers: Output vector of inlier indices.
 | |
| 
 | |
| .. seealso:: :ocv:func:`solvePnPRansac`
 | |
| 
 | |
| 
 | |
| 
 | |
| .. [Felzenszwalb2006] Pedro F. Felzenszwalb algorithm [Pedro F. Felzenszwalb and Daniel P. Huttenlocher. *Efficient belief propagation for early vision*. International Journal of Computer Vision, 70(1), October 2006
 | |
| 
 | |
| .. [Yang2010] Q. Yang, L. Wang, and N. Ahuja. *A constant-space belief propagation algorithm for stereo matching*. In CVPR, 2010.
 | 
