220 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			220 lines
		
	
	
		
			5.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHROOTS_H
 | |
| #define INCLUDED_IMATHROOTS_H
 | |
| 
 | |
| //---------------------------------------------------------------------
 | |
| //
 | |
| //	Functions to solve linear, quadratic or cubic equations
 | |
| //
 | |
| //---------------------------------------------------------------------
 | |
| 
 | |
| #include <ImathMath.h>
 | |
| #include <complex>
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| //--------------------------------------------------------------------------
 | |
| // Find the real solutions of a linear, quadratic or cubic equation:
 | |
| //
 | |
| //   	function				   equation solved
 | |
| //
 | |
| //   solveLinear (a, b, x)		                      a * x + b == 0
 | |
| //   solveQuadratic (a, b, c, x)	            a * x*x + b * x + c == 0
 | |
| //   solveNormalizedCubic (r, s, t, x)	    x*x*x + r * x*x + s * x + t == 0
 | |
| //   solveCubic (a, b, c, d, x)		a * x*x*x + b * x*x + c * x + d == 0
 | |
| //
 | |
| // Return value:
 | |
| //
 | |
| //	 3	three real solutions, stored in x[0], x[1] and x[2]
 | |
| //	 2	two real solutions, stored in x[0] and x[1]
 | |
| //	 1	one real solution, stored in x[1]
 | |
| //	 0	no real solutions
 | |
| //	-1	all real numbers are solutions
 | |
| //
 | |
| // Notes:
 | |
| //
 | |
| //    * It is possible that an equation has real solutions, but that the
 | |
| //	solutions (or some intermediate result) are not representable.
 | |
| //	In this case, either some of the solutions returned are invalid
 | |
| //	(nan or infinity), or, if floating-point exceptions have been
 | |
| //	enabled with Iex::mathExcOn(), an Iex::MathExc exception is
 | |
| //	thrown.
 | |
| //
 | |
| //    * Cubic equations are solved using Cardano's Formula; even though
 | |
| //	only real solutions are produced, some intermediate results are
 | |
| //	complex (std::complex<T>).
 | |
| //
 | |
| //--------------------------------------------------------------------------
 | |
| 
 | |
| template <class T> int	solveLinear (T a, T b, T &x);
 | |
| template <class T> int	solveQuadratic (T a, T b, T c, T x[2]);
 | |
| template <class T> int	solveNormalizedCubic (T r, T s, T t, T x[3]);
 | |
| template <class T> int	solveCubic (T a, T b, T c, T d, T x[3]);
 | |
| 
 | |
| 
 | |
| //---------------
 | |
| // Implementation
 | |
| //---------------
 | |
| 
 | |
| template <class T>
 | |
| int
 | |
| solveLinear (T a, T b, T &x)
 | |
| {
 | |
|     if (a != 0)
 | |
|     {
 | |
|     x = -b / a;
 | |
|     return 1;
 | |
|     }
 | |
|     else if (b != 0)
 | |
|     {
 | |
|     return 0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     return -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| int
 | |
| solveQuadratic (T a, T b, T c, T x[2])
 | |
| {
 | |
|     if (a == 0)
 | |
|     {
 | |
|     return solveLinear (b, c, x[0]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     T D = b * b - 4 * a * c;
 | |
| 
 | |
|     if (D > 0)
 | |
|     {
 | |
|         T s = Math<T>::sqrt (D);
 | |
|         T q = -(b + (b > 0 ? 1 : -1) * s) / T(2);
 | |
| 
 | |
|         x[0] = q / a;
 | |
|         x[1] = c / q;
 | |
|         return 2;
 | |
|     }
 | |
|     if (D == 0)
 | |
|     {
 | |
|         x[0] = -b / (2 * a);
 | |
|         return 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return 0;
 | |
|     }
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| int
 | |
| solveNormalizedCubic (T r, T s, T t, T x[3])
 | |
| {
 | |
|     T p  = (3 * s - r * r) / 3;
 | |
|     T q  = 2 * r * r * r / 27 - r * s / 3 + t;
 | |
|     T p3 = p / 3;
 | |
|     T q2 = q / 2;
 | |
|     T D  = p3 * p3 * p3 + q2 * q2;
 | |
| 
 | |
|     if (D == 0 && p3 == 0)
 | |
|     {
 | |
|     x[0] = -r / 3;
 | |
|     x[1] = -r / 3;
 | |
|     x[2] = -r / 3;
 | |
|     return 1;
 | |
|     }
 | |
| 
 | |
|     std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
 | |
|                   T (1) / T (3));
 | |
| 
 | |
|     std::complex<T> v = -p / (T (3) * u);
 | |
| 
 | |
|     const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
 | |
|                                 // for long double
 | |
|     std::complex<T> y0 (u + v);
 | |
| 
 | |
|     std::complex<T> y1 (-(u + v) / T (2) +
 | |
|              (u - v) / T (2) * std::complex<T> (0, sqrt3));
 | |
| 
 | |
|     std::complex<T> y2 (-(u + v) / T (2) -
 | |
|              (u - v) / T (2) * std::complex<T> (0, sqrt3));
 | |
| 
 | |
|     if (D > 0)
 | |
|     {
 | |
|     x[0] = y0.real() - r / 3;
 | |
|     return 1;
 | |
|     }
 | |
|     else if (D == 0)
 | |
|     {
 | |
|     x[0] = y0.real() - r / 3;
 | |
|     x[1] = y1.real() - r / 3;
 | |
|     return 2;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     x[0] = y0.real() - r / 3;
 | |
|     x[1] = y1.real() - r / 3;
 | |
|     x[2] = y2.real() - r / 3;
 | |
|     return 3;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| template <class T>
 | |
| int
 | |
| solveCubic (T a, T b, T c, T d, T x[3])
 | |
| {
 | |
|     if (a == 0)
 | |
|     {
 | |
|     return solveQuadratic (b, c, d, x);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|     return solveNormalizedCubic (b / a, c / a, d / a, x);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
