285 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			8.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "opencv2/objdetect/objdetect.hpp"
 | 
						|
#include "opencv2/highgui/highgui.hpp"
 | 
						|
#include "opencv2/imgproc/imgproc.hpp"
 | 
						|
#include "opencv2/ocl/ocl.hpp"
 | 
						|
#include <iostream>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
#define LOOP_NUM 10
 | 
						|
 | 
						|
const static Scalar colors[] =  { CV_RGB(0,0,255),
 | 
						|
                                  CV_RGB(0,128,255),
 | 
						|
                                  CV_RGB(0,255,255),
 | 
						|
                                  CV_RGB(0,255,0),
 | 
						|
                                  CV_RGB(255,128,0),
 | 
						|
                                  CV_RGB(255,255,0),
 | 
						|
                                  CV_RGB(255,0,0),
 | 
						|
                                  CV_RGB(255,0,255)
 | 
						|
                                } ;
 | 
						|
 | 
						|
 | 
						|
int64 work_begin = 0;
 | 
						|
int64 work_end = 0;
 | 
						|
string outputName;
 | 
						|
 | 
						|
static void workBegin()
 | 
						|
{
 | 
						|
    work_begin = getTickCount();
 | 
						|
}
 | 
						|
 | 
						|
static void workEnd()
 | 
						|
{
 | 
						|
    work_end += (getTickCount() - work_begin);
 | 
						|
}
 | 
						|
 | 
						|
static double getTime()
 | 
						|
{
 | 
						|
    return work_end /((double)cvGetTickFrequency() * 1000.);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void detect( Mat& img, vector<Rect>& faces,
 | 
						|
             ocl::OclCascadeClassifier& cascade,
 | 
						|
             double scale, bool calTime);
 | 
						|
 | 
						|
 | 
						|
static void detectCPU( Mat& img, vector<Rect>& faces,
 | 
						|
                CascadeClassifier& cascade,
 | 
						|
                double scale, bool calTime);
 | 
						|
 | 
						|
 | 
						|
static void Draw(Mat& img, vector<Rect>& faces, double scale);
 | 
						|
 | 
						|
 | 
						|
// This function test if gpu_rst matches cpu_rst.
 | 
						|
// If the two vectors are not equal, it will return the difference in vector size
 | 
						|
// Else if will return (total diff of each cpu and gpu rects covered pixels)/(total cpu rects covered pixels)
 | 
						|
double checkRectSimilarity(Size sz, vector<Rect>& cpu_rst, vector<Rect>& gpu_rst);
 | 
						|
 | 
						|
int main( int argc, const char** argv )
 | 
						|
{
 | 
						|
    const char* keys =
 | 
						|
        "{ h | help       | false       | print help message }"
 | 
						|
        "{ i | input      |             | specify input image }"
 | 
						|
        "{ t | template   | haarcascade_frontalface_alt.xml |"
 | 
						|
        " specify template file path }"
 | 
						|
        "{ c | scale      |   1.0       | scale image }"
 | 
						|
        "{ s | use_cpu    | false       | use cpu or gpu to process the image }"
 | 
						|
        "{ o | output     | facedetect_output.jpg  |"
 | 
						|
        " specify output image save path(only works when input is images) }";
 | 
						|
 | 
						|
    CommandLineParser cmd(argc, argv, keys);
 | 
						|
    if (cmd.get<bool>("help"))
 | 
						|
    {
 | 
						|
        cout << "Usage : facedetect [options]" << endl;
 | 
						|
        cout << "Available options:" << endl;
 | 
						|
        cmd.printParams();
 | 
						|
        return EXIT_SUCCESS;
 | 
						|
    }
 | 
						|
 | 
						|
    CvCapture* capture = 0;
 | 
						|
    Mat frame, frameCopy, image;
 | 
						|
 | 
						|
    bool useCPU = cmd.get<bool>("s");
 | 
						|
    string inputName = cmd.get<string>("i");
 | 
						|
    outputName = cmd.get<string>("o");
 | 
						|
    string cascadeName = cmd.get<string>("t");
 | 
						|
    double scale = cmd.get<double>("c");
 | 
						|
    ocl::OclCascadeClassifier cascade;
 | 
						|
    CascadeClassifier  cpu_cascade;
 | 
						|
 | 
						|
    if( !cascade.load( cascadeName ) || !cpu_cascade.load(cascadeName) )
 | 
						|
    {
 | 
						|
        cout << "ERROR: Could not load classifier cascade" << endl;
 | 
						|
        return EXIT_FAILURE;
 | 
						|
    }
 | 
						|
 | 
						|
    if( inputName.empty() )
 | 
						|
    {
 | 
						|
        capture = cvCaptureFromCAM(0);
 | 
						|
        if(!capture)
 | 
						|
            cout << "Capture from CAM 0 didn't work" << endl;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        image = imread( inputName, CV_LOAD_IMAGE_COLOR );
 | 
						|
        if( image.empty() )
 | 
						|
        {
 | 
						|
            capture = cvCaptureFromAVI( inputName.c_str() );
 | 
						|
            if(!capture)
 | 
						|
                cout << "Capture from AVI didn't work" << endl;
 | 
						|
            return EXIT_FAILURE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    cvNamedWindow( "result", 1 );
 | 
						|
    if( capture )
 | 
						|
    {
 | 
						|
        cout << "In capture ..." << endl;
 | 
						|
        for(;;)
 | 
						|
        {
 | 
						|
            IplImage* iplImg = cvQueryFrame( capture );
 | 
						|
            frame = iplImg;
 | 
						|
            vector<Rect> faces;
 | 
						|
            if( frame.empty() )
 | 
						|
                break;
 | 
						|
            if( iplImg->origin == IPL_ORIGIN_TL )
 | 
						|
                frame.copyTo( frameCopy );
 | 
						|
            else
 | 
						|
                flip( frame, frameCopy, 0 );
 | 
						|
 | 
						|
            if(useCPU)
 | 
						|
                detectCPU(frameCopy, faces, cpu_cascade, scale, false);
 | 
						|
            else
 | 
						|
                detect(frameCopy, faces, cascade, scale, false);
 | 
						|
 | 
						|
            Draw(frameCopy, faces, scale);
 | 
						|
            if( waitKey( 10 ) >= 0 )
 | 
						|
                break;
 | 
						|
        }
 | 
						|
        cvReleaseCapture( &capture );
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        cout << "In image read" << endl;
 | 
						|
        vector<Rect> faces;
 | 
						|
        vector<Rect> ref_rst;
 | 
						|
        double accuracy = 0.;
 | 
						|
        for(int i = 0; i <= LOOP_NUM; i ++)
 | 
						|
        {
 | 
						|
            cout << "loop" << i << endl;
 | 
						|
            if(useCPU)
 | 
						|
                detectCPU(image, faces, cpu_cascade, scale, i==0?false:true);
 | 
						|
            else
 | 
						|
            {
 | 
						|
                detect(image, faces, cascade, scale, i==0?false:true);
 | 
						|
                if(i == 0)
 | 
						|
                {
 | 
						|
                    detectCPU(image, ref_rst, cpu_cascade, scale, false);
 | 
						|
                    accuracy = checkRectSimilarity(image.size(), ref_rst, faces);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (i == LOOP_NUM)
 | 
						|
            {
 | 
						|
                if (useCPU)
 | 
						|
                    cout << "average CPU time (noCamera) : ";
 | 
						|
                else
 | 
						|
                    cout << "average GPU time (noCamera) : ";
 | 
						|
                cout << getTime() / LOOP_NUM << " ms" << endl;
 | 
						|
                cout << "accuracy value: " << accuracy <<endl;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        Draw(image, faces, scale);
 | 
						|
        waitKey(0);
 | 
						|
    }
 | 
						|
 | 
						|
    cvDestroyWindow("result");
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void detect( Mat& img, vector<Rect>& faces,
 | 
						|
             ocl::OclCascadeClassifier& cascade,
 | 
						|
             double scale, bool calTime)
 | 
						|
{
 | 
						|
    ocl::oclMat image(img);
 | 
						|
    ocl::oclMat gray, smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
 | 
						|
    if(calTime) workBegin();
 | 
						|
    ocl::cvtColor( image, gray, CV_BGR2GRAY );
 | 
						|
    ocl::resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
 | 
						|
    ocl::equalizeHist( smallImg, smallImg );
 | 
						|
 | 
						|
    cascade.detectMultiScale( smallImg, faces, 1.1,
 | 
						|
                              3, 0
 | 
						|
                              |CV_HAAR_SCALE_IMAGE
 | 
						|
                              , Size(30,30), Size(0, 0) );
 | 
						|
    if(calTime) workEnd();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void detectCPU( Mat& img, vector<Rect>& faces,
 | 
						|
                CascadeClassifier& cascade,
 | 
						|
                double scale, bool calTime)
 | 
						|
{
 | 
						|
    if(calTime) workBegin();
 | 
						|
    Mat cpu_gray, cpu_smallImg( cvRound (img.rows/scale), cvRound(img.cols/scale), CV_8UC1 );
 | 
						|
    cvtColor(img, cpu_gray, CV_BGR2GRAY);
 | 
						|
    resize(cpu_gray, cpu_smallImg, cpu_smallImg.size(), 0, 0, INTER_LINEAR);
 | 
						|
    equalizeHist(cpu_smallImg, cpu_smallImg);
 | 
						|
    cascade.detectMultiScale(cpu_smallImg, faces, 1.1,
 | 
						|
                             3, 0 | CV_HAAR_SCALE_IMAGE,
 | 
						|
                             Size(30, 30), Size(0, 0));
 | 
						|
    if(calTime) workEnd();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Draw(Mat& img, vector<Rect>& faces, double scale)
 | 
						|
{
 | 
						|
    int i = 0;
 | 
						|
    for( vector<Rect>::const_iterator r = faces.begin(); r != faces.end(); r++, i++ )
 | 
						|
    {
 | 
						|
        Point center;
 | 
						|
        Scalar color = colors[i%8];
 | 
						|
        int radius;
 | 
						|
        center.x = cvRound((r->x + r->width*0.5)*scale);
 | 
						|
        center.y = cvRound((r->y + r->height*0.5)*scale);
 | 
						|
        radius = cvRound((r->width + r->height)*0.25*scale);
 | 
						|
        circle( img, center, radius, color, 3, 8, 0 );
 | 
						|
    }
 | 
						|
    imwrite( outputName, img );
 | 
						|
    if(abs(scale-1.0)>.001)
 | 
						|
    {
 | 
						|
        resize(img, img, Size((int)(img.cols/scale), (int)(img.rows/scale)));
 | 
						|
    }
 | 
						|
    imshow( "result", img );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
double checkRectSimilarity(Size sz, vector<Rect>& ob1, vector<Rect>& ob2)
 | 
						|
{
 | 
						|
    double final_test_result = 0.0;
 | 
						|
    size_t sz1 = ob1.size();
 | 
						|
    size_t sz2 = ob2.size();
 | 
						|
 | 
						|
    if(sz1 != sz2)
 | 
						|
    {
 | 
						|
        return sz1 > sz2 ? (double)(sz1 - sz2) : (double)(sz2 - sz1);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        if(sz1==0 && sz2==0)
 | 
						|
            return 0;
 | 
						|
        Mat cpu_result(sz, CV_8UC1);
 | 
						|
        cpu_result.setTo(0);
 | 
						|
 | 
						|
        for(vector<Rect>::const_iterator r = ob1.begin(); r != ob1.end(); r++)
 | 
						|
        {
 | 
						|
            Mat cpu_result_roi(cpu_result, *r);
 | 
						|
            cpu_result_roi.setTo(1);
 | 
						|
            cpu_result.copyTo(cpu_result);
 | 
						|
        }
 | 
						|
        int cpu_area = countNonZero(cpu_result > 0);
 | 
						|
 | 
						|
 | 
						|
        Mat gpu_result(sz, CV_8UC1);
 | 
						|
        gpu_result.setTo(0);
 | 
						|
        for(vector<Rect>::const_iterator r2 = ob2.begin(); r2 != ob2.end(); r2++)
 | 
						|
        {
 | 
						|
            cv::Mat gpu_result_roi(gpu_result, *r2);
 | 
						|
            gpu_result_roi.setTo(1);
 | 
						|
            gpu_result.copyTo(gpu_result);
 | 
						|
        }
 | 
						|
 | 
						|
        Mat result_;
 | 
						|
        multiply(cpu_result, gpu_result, result_);
 | 
						|
        int result = countNonZero(result_ > 0);
 | 
						|
        if(cpu_area!=0 && result!=0)
 | 
						|
            final_test_result = 1.0 - (double)result/(double)cpu_area;
 | 
						|
        else if(cpu_area==0 && result!=0)
 | 
						|
            final_test_result = -1;
 | 
						|
    }
 | 
						|
    return final_test_result;
 | 
						|
}
 |