169 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			169 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// The "Square Detector" program.
 | 
						|
// It loads several images sequentially and tries to find squares in
 | 
						|
// each image
 | 
						|
 | 
						|
#include "opencv2/core/core.hpp"
 | 
						|
#include "opencv2/imgproc/imgproc.hpp"
 | 
						|
#include "opencv2/highgui/highgui.hpp"
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
static void help()
 | 
						|
{
 | 
						|
    cout <<
 | 
						|
    "\nA program using pyramid scaling, Canny, contours, contour simpification and\n"
 | 
						|
    "memory storage (it's got it all folks) to find\n"
 | 
						|
    "squares in a list of images pic1-6.png\n"
 | 
						|
    "Returns sequence of squares detected on the image.\n"
 | 
						|
    "the sequence is stored in the specified memory storage\n"
 | 
						|
    "Call:\n"
 | 
						|
    "./squares\n"
 | 
						|
    "Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int thresh = 50, N = 11;
 | 
						|
const char* wndname = "Square Detection Demo";
 | 
						|
 | 
						|
// helper function:
 | 
						|
// finds a cosine of angle between vectors
 | 
						|
// from pt0->pt1 and from pt0->pt2
 | 
						|
static double angle( Point pt1, Point pt2, Point pt0 )
 | 
						|
{
 | 
						|
    double dx1 = pt1.x - pt0.x;
 | 
						|
    double dy1 = pt1.y - pt0.y;
 | 
						|
    double dx2 = pt2.x - pt0.x;
 | 
						|
    double dy2 = pt2.y - pt0.y;
 | 
						|
    return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
 | 
						|
}
 | 
						|
 | 
						|
// returns sequence of squares detected on the image.
 | 
						|
// the sequence is stored in the specified memory storage
 | 
						|
static void findSquares( const Mat& image, vector<vector<Point> >& squares )
 | 
						|
{
 | 
						|
    squares.clear();
 | 
						|
 | 
						|
    Mat pyr, timg, gray0(image.size(), CV_8U), gray;
 | 
						|
 | 
						|
    // down-scale and upscale the image to filter out the noise
 | 
						|
    pyrDown(image, pyr, Size(image.cols/2, image.rows/2));
 | 
						|
    pyrUp(pyr, timg, image.size());
 | 
						|
    vector<vector<Point> > contours;
 | 
						|
 | 
						|
    // find squares in every color plane of the image
 | 
						|
    for( int c = 0; c < 3; c++ )
 | 
						|
    {
 | 
						|
        int ch[] = {c, 0};
 | 
						|
        mixChannels(&timg, 1, &gray0, 1, ch, 1);
 | 
						|
 | 
						|
        // try several threshold levels
 | 
						|
        for( int l = 0; l < N; l++ )
 | 
						|
        {
 | 
						|
            // hack: use Canny instead of zero threshold level.
 | 
						|
            // Canny helps to catch squares with gradient shading
 | 
						|
            if( l == 0 )
 | 
						|
            {
 | 
						|
                // apply Canny. Take the upper threshold from slider
 | 
						|
                // and set the lower to 0 (which forces edges merging)
 | 
						|
                Canny(gray0, gray, 0, thresh, 5);
 | 
						|
                // dilate canny output to remove potential
 | 
						|
                // holes between edge segments
 | 
						|
                dilate(gray, gray, Mat(), Point(-1,-1));
 | 
						|
            }
 | 
						|
            else
 | 
						|
            {
 | 
						|
                // apply threshold if l!=0:
 | 
						|
                //     tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
 | 
						|
                gray = gray0 >= (l+1)*255/N;
 | 
						|
            }
 | 
						|
 | 
						|
            // find contours and store them all as a list
 | 
						|
            findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
 | 
						|
 | 
						|
            vector<Point> approx;
 | 
						|
 | 
						|
            // test each contour
 | 
						|
            for( size_t i = 0; i < contours.size(); i++ )
 | 
						|
            {
 | 
						|
                // approximate contour with accuracy proportional
 | 
						|
                // to the contour perimeter
 | 
						|
                approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
 | 
						|
 | 
						|
                // square contours should have 4 vertices after approximation
 | 
						|
                // relatively large area (to filter out noisy contours)
 | 
						|
                // and be convex.
 | 
						|
                // Note: absolute value of an area is used because
 | 
						|
                // area may be positive or negative - in accordance with the
 | 
						|
                // contour orientation
 | 
						|
                if( approx.size() == 4 &&
 | 
						|
                    fabs(contourArea(Mat(approx))) > 1000 &&
 | 
						|
                    isContourConvex(Mat(approx)) )
 | 
						|
                {
 | 
						|
                    double maxCosine = 0;
 | 
						|
 | 
						|
                    for( int j = 2; j < 5; j++ )
 | 
						|
                    {
 | 
						|
                        // find the maximum cosine of the angle between joint edges
 | 
						|
                        double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
 | 
						|
                        maxCosine = MAX(maxCosine, cosine);
 | 
						|
                    }
 | 
						|
 | 
						|
                    // if cosines of all angles are small
 | 
						|
                    // (all angles are ~90 degree) then write quandrange
 | 
						|
                    // vertices to resultant sequence
 | 
						|
                    if( maxCosine < 0.3 )
 | 
						|
                        squares.push_back(approx);
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// the function draws all the squares in the image
 | 
						|
static void drawSquares( Mat& image, const vector<vector<Point> >& squares )
 | 
						|
{
 | 
						|
    for( size_t i = 0; i < squares.size(); i++ )
 | 
						|
    {
 | 
						|
        const Point* p = &squares[i][0];
 | 
						|
        int n = (int)squares[i].size();
 | 
						|
        polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
 | 
						|
    }
 | 
						|
 | 
						|
    imshow(wndname, image);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
int main(int /*argc*/, char** /*argv*/)
 | 
						|
{
 | 
						|
    static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
 | 
						|
        "pic4.png", "pic5.png", "pic6.png", 0 };
 | 
						|
    help();
 | 
						|
    namedWindow( wndname, 1 );
 | 
						|
    vector<vector<Point> > squares;
 | 
						|
 | 
						|
    for( int i = 0; names[i] != 0; i++ )
 | 
						|
    {
 | 
						|
        Mat image = imread(names[i], 1);
 | 
						|
        if( image.empty() )
 | 
						|
        {
 | 
						|
            cout << "Couldn't load " << names[i] << endl;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        findSquares(image, squares);
 | 
						|
        drawSquares(image, squares);
 | 
						|
 | 
						|
        int c = waitKey();
 | 
						|
        if( (char)c == 27 )
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |