310 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			310 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #include "perf_precomp.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace testing;
 | |
| using namespace perf;
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // FAST
 | |
| 
 | |
| DEF_PARAM_TEST(Image_Threshold_NonMaxSupression, string, int, bool);
 | |
| 
 | |
| PERF_TEST_P(Image_Threshold_NonMaxSupression, Features2D_FAST,
 | |
|             Combine(Values<string>("gpu/perf/aloe.png"),
 | |
|                     Values(20),
 | |
|                     Bool()))
 | |
| {
 | |
|     const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     const int threshold = GET_PARAM(1);
 | |
|     const bool nonMaxSuppersion = GET_PARAM(2);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::FAST_GPU d_fast(threshold, nonMaxSuppersion, 0.5);
 | |
| 
 | |
|         const cv::gpu::GpuMat d_img(img);
 | |
|         cv::gpu::GpuMat d_keypoints;
 | |
| 
 | |
|         TEST_CYCLE() d_fast(d_img, cv::gpu::GpuMat(), d_keypoints);
 | |
| 
 | |
|         std::vector<cv::KeyPoint> gpu_keypoints;
 | |
|         d_fast.downloadKeypoints(d_keypoints, gpu_keypoints);
 | |
| 
 | |
|         sortKeyPoints(gpu_keypoints);
 | |
| 
 | |
|         SANITY_CHECK_KEYPOINTS(gpu_keypoints);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         std::vector<cv::KeyPoint> cpu_keypoints;
 | |
| 
 | |
|         TEST_CYCLE() cv::FAST(img, cpu_keypoints, threshold, nonMaxSuppersion);
 | |
| 
 | |
|         SANITY_CHECK_KEYPOINTS(cpu_keypoints);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // ORB
 | |
| 
 | |
| DEF_PARAM_TEST(Image_NFeatures, string, int);
 | |
| 
 | |
| PERF_TEST_P(Image_NFeatures, Features2D_ORB,
 | |
|             Combine(Values<string>("gpu/perf/aloe.png"),
 | |
|                     Values(4000)))
 | |
| {
 | |
|     declare.time(300.0);
 | |
| 
 | |
|     const cv::Mat img = readImage(GET_PARAM(0), cv::IMREAD_GRAYSCALE);
 | |
|     ASSERT_FALSE(img.empty());
 | |
| 
 | |
|     const int nFeatures = GET_PARAM(1);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::ORB_GPU d_orb(nFeatures);
 | |
| 
 | |
|         const cv::gpu::GpuMat d_img(img);
 | |
|         cv::gpu::GpuMat d_keypoints, d_descriptors;
 | |
| 
 | |
|         TEST_CYCLE() d_orb(d_img, cv::gpu::GpuMat(), d_keypoints, d_descriptors);
 | |
| 
 | |
|         std::vector<cv::KeyPoint> gpu_keypoints;
 | |
|         d_orb.downloadKeyPoints(d_keypoints, gpu_keypoints);
 | |
| 
 | |
|         cv::Mat gpu_descriptors(d_descriptors);
 | |
| 
 | |
|         gpu_keypoints.resize(10);
 | |
|         gpu_descriptors = gpu_descriptors.rowRange(0, 10);
 | |
| 
 | |
|         sortKeyPoints(gpu_keypoints, gpu_descriptors);
 | |
| 
 | |
|         SANITY_CHECK_KEYPOINTS(gpu_keypoints);
 | |
|         SANITY_CHECK(gpu_descriptors);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::ORB orb(nFeatures);
 | |
| 
 | |
|         std::vector<cv::KeyPoint> cpu_keypoints;
 | |
|         cv::Mat cpu_descriptors;
 | |
| 
 | |
|         TEST_CYCLE() orb(img, cv::noArray(), cpu_keypoints, cpu_descriptors);
 | |
| 
 | |
|         SANITY_CHECK_KEYPOINTS(cpu_keypoints);
 | |
|         SANITY_CHECK(cpu_descriptors);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BFMatch
 | |
| 
 | |
| DEF_PARAM_TEST(DescSize_Norm, int, NormType);
 | |
| 
 | |
| PERF_TEST_P(DescSize_Norm, Features2D_BFMatch,
 | |
|             Combine(Values(64, 128, 256),
 | |
|                     Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2), NormType(cv::NORM_HAMMING))))
 | |
| {
 | |
|     declare.time(20.0);
 | |
| 
 | |
|     const int desc_size = GET_PARAM(0);
 | |
|     const int normType = GET_PARAM(1);
 | |
| 
 | |
|     const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
 | |
| 
 | |
|     cv::Mat query(3000, desc_size, type);
 | |
|     declare.in(query, WARMUP_RNG);
 | |
| 
 | |
|     cv::Mat train(3000, desc_size, type);
 | |
|     declare.in(train, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::BFMatcher_GPU d_matcher(normType);
 | |
| 
 | |
|         const cv::gpu::GpuMat d_query(query);
 | |
|         const cv::gpu::GpuMat d_train(train);
 | |
|         cv::gpu::GpuMat d_trainIdx, d_distance;
 | |
| 
 | |
|         TEST_CYCLE() d_matcher.matchSingle(d_query, d_train, d_trainIdx, d_distance);
 | |
| 
 | |
|         std::vector<cv::DMatch> gpu_matches;
 | |
|         d_matcher.matchDownload(d_trainIdx, d_distance, gpu_matches);
 | |
| 
 | |
|         SANITY_CHECK_MATCHES(gpu_matches);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::BFMatcher matcher(normType);
 | |
| 
 | |
|         std::vector<cv::DMatch> cpu_matches;
 | |
| 
 | |
|         TEST_CYCLE() matcher.match(query, train, cpu_matches);
 | |
| 
 | |
|         SANITY_CHECK_MATCHES(cpu_matches);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BFKnnMatch
 | |
| 
 | |
| static void toOneRowMatches(const std::vector< std::vector<cv::DMatch> >& src, std::vector<cv::DMatch>& dst)
 | |
| {
 | |
|     dst.clear();
 | |
|     for (size_t i = 0; i < src.size(); ++i)
 | |
|         for (size_t j = 0; j < src[i].size(); ++j)
 | |
|             dst.push_back(src[i][j]);
 | |
| }
 | |
| 
 | |
| DEF_PARAM_TEST(DescSize_K_Norm, int, int, NormType);
 | |
| 
 | |
| PERF_TEST_P(DescSize_K_Norm, Features2D_BFKnnMatch,
 | |
|             Combine(Values(64, 128, 256),
 | |
|                     Values(2, 3),
 | |
|                     Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))))
 | |
| {
 | |
|     declare.time(30.0);
 | |
| 
 | |
|     const int desc_size = GET_PARAM(0);
 | |
|     const int k = GET_PARAM(1);
 | |
|     const int normType = GET_PARAM(2);
 | |
| 
 | |
|     const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
 | |
| 
 | |
|     cv::Mat query(3000, desc_size, type);
 | |
|     declare.in(query, WARMUP_RNG);
 | |
| 
 | |
|     cv::Mat train(3000, desc_size, type);
 | |
|     declare.in(train, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::BFMatcher_GPU d_matcher(normType);
 | |
| 
 | |
|         const cv::gpu::GpuMat d_query(query);
 | |
|         const cv::gpu::GpuMat d_train(train);
 | |
|         cv::gpu::GpuMat d_trainIdx, d_distance, d_allDist;
 | |
| 
 | |
|         TEST_CYCLE() d_matcher.knnMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_allDist, k);
 | |
| 
 | |
|         std::vector< std::vector<cv::DMatch> > matchesTbl;
 | |
|         d_matcher.knnMatchDownload(d_trainIdx, d_distance, matchesTbl);
 | |
| 
 | |
|         std::vector<cv::DMatch> gpu_matches;
 | |
|         toOneRowMatches(matchesTbl, gpu_matches);
 | |
| 
 | |
|         SANITY_CHECK_MATCHES(gpu_matches);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::BFMatcher matcher(normType);
 | |
| 
 | |
|         std::vector< std::vector<cv::DMatch> > matchesTbl;
 | |
| 
 | |
|         TEST_CYCLE() matcher.knnMatch(query, train, matchesTbl, k);
 | |
| 
 | |
|         std::vector<cv::DMatch> cpu_matches;
 | |
|         toOneRowMatches(matchesTbl, cpu_matches);
 | |
| 
 | |
|         SANITY_CHECK_MATCHES(cpu_matches);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //////////////////////////////////////////////////////////////////////
 | |
| // BFRadiusMatch
 | |
| 
 | |
| PERF_TEST_P(DescSize_Norm, Features2D_BFRadiusMatch,
 | |
|             Combine(Values(64, 128, 256),
 | |
|                     Values(NormType(cv::NORM_L1), NormType(cv::NORM_L2))))
 | |
| {
 | |
|     declare.time(30.0);
 | |
| 
 | |
|     const int desc_size = GET_PARAM(0);
 | |
|     const int normType = GET_PARAM(1);
 | |
| 
 | |
|     const int type = normType == cv::NORM_HAMMING ? CV_8U : CV_32F;
 | |
|     const float maxDistance = 10000;
 | |
| 
 | |
|     cv::Mat query(3000, desc_size, type);
 | |
|     declare.in(query, WARMUP_RNG);
 | |
| 
 | |
|     cv::Mat train(3000, desc_size, type);
 | |
|     declare.in(train, WARMUP_RNG);
 | |
| 
 | |
|     if (PERF_RUN_GPU())
 | |
|     {
 | |
|         cv::gpu::BFMatcher_GPU d_matcher(normType);
 | |
| 
 | |
|         const cv::gpu::GpuMat d_query(query);
 | |
|         const cv::gpu::GpuMat d_train(train);
 | |
|         cv::gpu::GpuMat d_trainIdx, d_nMatches, d_distance;
 | |
| 
 | |
|         TEST_CYCLE() d_matcher.radiusMatchSingle(d_query, d_train, d_trainIdx, d_distance, d_nMatches, maxDistance);
 | |
| 
 | |
|         std::vector< std::vector<cv::DMatch> > matchesTbl;
 | |
|         d_matcher.radiusMatchDownload(d_trainIdx, d_distance, d_nMatches, matchesTbl);
 | |
| 
 | |
|         std::vector<cv::DMatch> gpu_matches;
 | |
|         toOneRowMatches(matchesTbl, gpu_matches);
 | |
| 
 | |
|         SANITY_CHECK_MATCHES(gpu_matches);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         cv::BFMatcher matcher(normType);
 | |
| 
 | |
|         std::vector< std::vector<cv::DMatch> > matchesTbl;
 | |
| 
 | |
|         TEST_CYCLE() matcher.radiusMatch(query, train, matchesTbl, maxDistance);
 | |
| 
 | |
|         std::vector<cv::DMatch> cpu_matches;
 | |
|         toOneRowMatches(matchesTbl, cpu_matches);
 | |
| 
 | |
|         SANITY_CHECK_MATCHES(cpu_matches);
 | |
|     }
 | |
| }
 | 
