opencv/modules/gpu/src/softcascade.cpp
2012-12-25 22:00:20 +04:00

676 lines
22 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <precomp.hpp>
#if !defined (HAVE_CUDA)
cv::gpu::SCascade::SCascade(const double, const double, const int, const int) { throw_nogpu(); }
cv::gpu::SCascade::~SCascade() { throw_nogpu(); }
bool cv::gpu::SCascade::load(const FileNode&) { throw_nogpu(); return false;}
void cv::gpu::SCascade::detect(InputArray, InputArray, OutputArray, Stream&) const { throw_nogpu(); }
void cv::gpu::SCascade::read(const FileNode& fn) { Algorithm::read(fn); }
cv::gpu::ChannelsProcessor::ChannelsProcessor() { throw_nogpu(); }
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { throw_nogpu(); }
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int, const int, const int)
{ throw_nogpu(); return cv::Ptr<cv::gpu::ChannelsProcessor>(0); }
#else
# include <icf.hpp>
cv::gpu::device::icf::Level::Level(int idx, const Octave& oct, const float scale, const int w, const int h)
: octave(idx), step(oct.stages), relScale(scale / oct.scale)
{
workRect.x = cvRound(w / (float)oct.shrinkage);
workRect.y = cvRound(h / (float)oct.shrinkage);
objSize.x = cv::saturate_cast<uchar>(oct.size.x * relScale);
objSize.y = cv::saturate_cast<uchar>(oct.size.y * relScale);
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool's and Dallal's papers
if (fabs(relScale - 1.f) < FLT_EPSILON)
scaling[0] = scaling[1] = 1.f;
else
{
scaling[0] = (relScale < 1.f) ? 0.89f * ::pow(relScale, 1.099f / ::log(2.0f)) : 1.f;
scaling[1] = relScale * relScale;
}
}
namespace cv { namespace gpu { namespace device {
namespace icf {
void fillBins(cv::gpu::PtrStepSzb hogluv, const cv::gpu::PtrStepSzf& nangle,
const int fw, const int fh, const int bins, cudaStream_t stream);
void suppress(const PtrStepSzb& objects, PtrStepSzb overlaps, PtrStepSzi ndetections,
PtrStepSzb suppressed, cudaStream_t stream);
void bgr2Luv(const PtrStepSzb& bgr, PtrStepSzb luv);
void gray2hog(const PtrStepSzb& gray, PtrStepSzb mag, const int bins);
void shrink(const cv::gpu::PtrStepSzb& channels, cv::gpu::PtrStepSzb shrunk);
}
// namespace imgproc {
// void shfl_integral_gpu_buffered(PtrStepSzb, PtrStepSz<uint4>, PtrStepSz<unsigned int>, int, cudaStream_t);
// template <typename T>
// void resize_gpu(PtrStepSzb src, PtrStepSzb srcWhole, int xoff, int yoff, float fx, float fy,
// PtrStepSzb dst, int interpolation, cudaStream_t stream);
// }
}}}
struct cv::gpu::SCascade::Fields
{
static Fields* parseCascade(const FileNode &root, const float mins, const float maxs, const int totals, const int method)
{
static const char *const SC_STAGE_TYPE = "stageType";
static const char *const SC_BOOST = "BOOST";
static const char *const SC_FEATURE_TYPE = "featureType";
static const char *const SC_ICF = "ICF";
// only Ada Boost supported
std::string stageTypeStr = (string)root[SC_STAGE_TYPE];
CV_Assert(stageTypeStr == SC_BOOST);
// only HOG-like integral channel features cupported
string featureTypeStr = (string)root[SC_FEATURE_TYPE];
CV_Assert(featureTypeStr == SC_ICF);
static const char *const SC_ORIG_W = "width";
static const char *const SC_ORIG_H = "height";
int origWidth = (int)root[SC_ORIG_W];
int origHeight = (int)root[SC_ORIG_H];
static const char *const SC_OCTAVES = "octaves";
static const char *const SC_STAGES = "stages";
static const char *const SC_FEATURES = "features";
static const char *const SC_WEEK = "weakClassifiers";
static const char *const SC_INTERNAL = "internalNodes";
static const char *const SC_LEAF = "leafValues";
static const char *const SC_OCT_SCALE = "scale";
static const char *const SC_OCT_STAGES = "stageNum";
static const char *const SC_OCT_SHRINKAGE = "shrinkingFactor";
static const char *const SC_STAGE_THRESHOLD = "stageThreshold";
static const char * const SC_F_CHANNEL = "channel";
static const char * const SC_F_RECT = "rect";
FileNode fn = root[SC_OCTAVES];
if (fn.empty()) return false;
using namespace device::icf;
std::vector<Octave> voctaves;
std::vector<float> vstages;
std::vector<Node> vnodes;
std::vector<float> vleaves;
FileNodeIterator it = fn.begin(), it_end = fn.end();
int feature_offset = 0;
ushort octIndex = 0;
ushort shrinkage = 1;
for (; it != it_end; ++it)
{
FileNode fns = *it;
float scale = (float)fns[SC_OCT_SCALE];
bool isUPOctave = scale >= 1;
ushort nstages = saturate_cast<ushort>((int)fns[SC_OCT_STAGES]);
ushort2 size;
size.x = cvRound(origWidth * scale);
size.y = cvRound(origHeight * scale);
shrinkage = saturate_cast<ushort>((int)fns[SC_OCT_SHRINKAGE]);
Octave octave(octIndex, nstages, shrinkage, size, scale);
CV_Assert(octave.stages > 0);
voctaves.push_back(octave);
FileNode ffs = fns[SC_FEATURES];
if (ffs.empty()) return false;
FileNodeIterator ftrs = ffs.begin();
fns = fns[SC_STAGES];
if (fn.empty()) return false;
// for each stage (~ decision tree with H = 2)
FileNodeIterator st = fns.begin(), st_end = fns.end();
for (; st != st_end; ++st )
{
fns = *st;
vstages.push_back((float)fns[SC_STAGE_THRESHOLD]);
fns = fns[SC_WEEK];
FileNodeIterator ftr = fns.begin(), ft_end = fns.end();
for (; ftr != ft_end; ++ftr)
{
fns = (*ftr)[SC_INTERNAL];
FileNodeIterator inIt = fns.begin(), inIt_end = fns.end();
for (; inIt != inIt_end;)
{
// int feature = (int)(*(inIt +=2)) + feature_offset;
inIt +=3;
// extract feature, Todo:check it
unsigned int th = saturate_cast<unsigned int>((float)(*(inIt++)));
cv::FileNode ftn = (*ftrs)[SC_F_RECT];
cv::FileNodeIterator r_it = ftn.begin();
uchar4 rect;
rect.x = saturate_cast<uchar>((int)*(r_it++));
rect.y = saturate_cast<uchar>((int)*(r_it++));
rect.z = saturate_cast<uchar>((int)*(r_it++));
rect.w = saturate_cast<uchar>((int)*(r_it++));
if (isUPOctave)
{
rect.z -= rect.x;
rect.w -= rect.y;
}
unsigned int channel = saturate_cast<unsigned int>((int)(*ftrs)[SC_F_CHANNEL]);
vnodes.push_back(Node(rect, channel, th));
++ftrs;
}
fns = (*ftr)[SC_LEAF];
inIt = fns.begin(), inIt_end = fns.end();
for (; inIt != inIt_end; ++inIt)
vleaves.push_back((float)(*inIt));
}
}
feature_offset += octave.stages * 3;
++octIndex;
}
cv::Mat hoctaves(1, (int) (voctaves.size() * sizeof(Octave)), CV_8UC1, (uchar*)&(voctaves[0]));
CV_Assert(!hoctaves.empty());
cv::Mat hstages(cv::Mat(vstages).reshape(1,1));
CV_Assert(!hstages.empty());
cv::Mat hnodes(1, (int) (vnodes.size() * sizeof(Node)), CV_8UC1, (uchar*)&(vnodes[0]) );
CV_Assert(!hnodes.empty());
cv::Mat hleaves(cv::Mat(vleaves).reshape(1,1));
CV_Assert(!hleaves.empty());
Fields* fields = new Fields(mins, maxs, totals, origWidth, origHeight, shrinkage, 0,
hoctaves, hstages, hnodes, hleaves, method);
fields->voctaves = voctaves;
fields->createLevels(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH);
return fields;
}
bool check(float mins,float maxs, int scales)
{
bool updated = (minScale == mins) || (maxScale == maxs) || (totals = scales);
minScale = mins;
maxScale = maxScale;
totals = scales;
return updated;
}
int createLevels(const int fh, const int fw)
{
using namespace device::icf;
std::vector<Level> vlevels;
float logFactor = (::log(maxScale) - ::log(minScale)) / (totals -1);
float scale = minScale;
int dcs = 0;
for (int sc = 0; sc < totals; ++sc)
{
int width = (int)::std::max(0.0f, fw - (origObjWidth * scale));
int height = (int)::std::max(0.0f, fh - (origObjHeight * scale));
float logScale = ::log(scale);
int fit = fitOctave(voctaves, logScale);
Level level(fit, voctaves[fit], scale, width, height);
if (!width || !height)
break;
else
{
vlevels.push_back(level);
if (voctaves[fit].scale < 1) ++dcs;
}
if (::fabs(scale - maxScale) < FLT_EPSILON) break;
scale = ::std::min(maxScale, ::expf(::log(scale) + logFactor));
}
cv::Mat hlevels = cv::Mat(1, (int) (vlevels.size() * sizeof(Level)), CV_8UC1, (uchar*)&(vlevels[0]) );
CV_Assert(!hlevels.empty());
levels.upload(hlevels);
downscales = dcs;
return dcs;
}
bool update(int fh, int fw, int shr)
{
shrunk.create(fh / shr * HOG_LUV_BINS, fw / shr, CV_8UC1);
integralBuffer.create(shrunk.rows, shrunk.cols, CV_32SC1);
hogluv.create((fh / shr) * HOG_LUV_BINS + 1, fw / shr + 1, CV_32SC1);
hogluv.setTo(cv::Scalar::all(0));
overlaps.create(1, 5000, CV_8UC1);
suppressed.create(1, sizeof(Detection) * 51, CV_8UC1);
return true;
}
Fields( const float mins, const float maxs, const int tts, const int ow, const int oh, const int shr, const int ds,
cv::Mat hoctaves, cv::Mat hstages, cv::Mat hnodes, cv::Mat hleaves, int method)
: minScale(mins), maxScale(maxs), totals(tts), origObjWidth(ow), origObjHeight(oh), shrinkage(shr), downscales(ds)
{
update(DEFAULT_FRAME_HEIGHT, DEFAULT_FRAME_WIDTH, shr);
octaves.upload(hoctaves);
stages.upload(hstages);
nodes.upload(hnodes);
leaves.upload(hleaves);
preprocessor = ChannelsProcessor::create(shrinkage, 6, method);
}
void detect(cv::gpu::GpuMat& objects, Stream& s) const
{
if (s)
s.enqueueMemSet(objects, 0);
else
cudaMemset(objects.data, 0, sizeof(Detection));
cudaSafeCall( cudaGetLastError());
device::icf::CascadeInvoker<device::icf::GK107PolicyX4> invoker
= device::icf::CascadeInvoker<device::icf::GK107PolicyX4>(levels, stages, nodes, leaves);
cudaStream_t stream = StreamAccessor::getStream(s);
invoker(mask, hogluv, objects, downscales, stream);
}
void suppress(GpuMat& objects, Stream& s)
{
GpuMat ndetections = GpuMat(objects, cv::Rect(0, 0, sizeof(Detection), 1));
ensureSizeIsEnough(objects.rows, objects.cols, CV_8UC1, overlaps);
if (s)
{
s.enqueueMemSet(overlaps, 0);
s.enqueueMemSet(suppressed, 0);
}
else
{
overlaps.setTo(0);
suppressed.setTo(0);
}
cudaStream_t stream = StreamAccessor::getStream(s);
device::icf::suppress(objects, overlaps, ndetections, suppressed, stream);
}
private:
typedef std::vector<device::icf::Octave>::const_iterator octIt_t;
static int fitOctave(const std::vector<device::icf::Octave>& octs, const float& logFactor)
{
float minAbsLog = FLT_MAX;
int res = 0;
for (int oct = 0; oct < (int)octs.size(); ++oct)
{
const device::icf::Octave& octave =octs[oct];
float logOctave = ::log(octave.scale);
float logAbsScale = ::fabs(logFactor - logOctave);
if(logAbsScale < minAbsLog)
{
res = oct;
minAbsLog = logAbsScale;
}
}
return res;
}
public:
cv::Ptr<ChannelsProcessor> preprocessor;
// scales range
float minScale;
float maxScale;
int totals;
int origObjWidth;
int origObjHeight;
const int shrinkage;
int downscales;
// 160x120x10
GpuMat shrunk;
// temporial mat for integrall
GpuMat integralBuffer;
// 161x121x10
GpuMat hogluv;
// used for suppression
GpuMat suppressed;
// used for area overlap computing during
GpuMat overlaps;
// Cascade from xml
GpuMat octaves;
GpuMat stages;
GpuMat nodes;
GpuMat leaves;
GpuMat levels;
// For ROI
GpuMat mask;
GpuMat genRoiTmp;
// GpuMat collected;
std::vector<device::icf::Octave> voctaves;
// DeviceInfo info;
enum { BOOST = 0 };
enum
{
DEFAULT_FRAME_WIDTH = 640,
DEFAULT_FRAME_HEIGHT = 480,
HOG_LUV_BINS = 10
};
};
cv::gpu::SCascade::SCascade(const double mins, const double maxs, const int sc, const int fl)
: fields(0), minScale(mins), maxScale(maxs), scales(sc), flags(fl) {}
cv::gpu::SCascade::~SCascade() { delete fields; }
bool cv::gpu::SCascade::load(const FileNode& fn)
{
if (fields) delete fields;
fields = Fields::parseCascade(fn, (float)minScale, (float)maxScale, scales, flags);
return fields != 0;
}
void cv::gpu::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _objects, Stream& s) const
{
CV_Assert(fields);
// only color images and precomputed integrals are supported
int type = _image.type();
CV_Assert(type == CV_8UC3 || type == CV_32SC1 || (!_rois.empty()));
const GpuMat image = _image.getGpuMat();
if (_objects.empty()) _objects.create(1, 4096 * sizeof(Detection), CV_8UC1);
GpuMat rois = _rois.getGpuMat(), objects = _objects.getGpuMat();
/// roi
Fields& flds = *fields;
int shr = flds.shrinkage;
flds.mask.create( rois.cols / shr, rois.rows / shr, rois.type());
cv::gpu::resize(rois, flds.genRoiTmp, cv::Size(), 1.f / shr, 1.f / shr, CV_INTER_AREA, s);
cv::gpu::transpose(flds.genRoiTmp, flds.mask, s);
if (type == CV_8UC3)
{
flds.update(image.rows, image.cols, flds.shrinkage);
if (flds.check((float)minScale, (float)maxScale, scales))
flds.createLevels(image.rows, image.cols);
flds.preprocessor->apply(image, flds.shrunk);
cv::gpu::integralBuffered(flds.shrunk, flds.hogluv, flds.integralBuffer, s);
}
else
{
if (s)
s.enqueueCopy(image, flds.hogluv);
else
image.copyTo(flds.hogluv);
}
flds.detect(objects, s);
if ( (flags && NMS_MASK) != NO_REJECT)
{
GpuMat spr(objects, cv::Rect(0, 0, flds.suppressed.cols, flds.suppressed.rows));
flds.suppress(objects, s);
flds.suppressed.copyTo(spr);
}
}
void cv::gpu::SCascade::read(const FileNode& fn)
{
Algorithm::read(fn);
}
namespace {
using cv::InputArray;
using cv::OutputArray;
using cv::gpu::Stream;
using cv::gpu::GpuMat;
inline void setZero(cv::gpu::GpuMat& m, Stream& s)
{
if (s)
s.enqueueMemSet(m, 0);
else
m.setTo(0);
}
struct GenricPreprocessor : public cv::gpu::ChannelsProcessor
{
GenricPreprocessor(const int s, const int b) : cv::gpu::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~GenricPreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, Stream& s = Stream::Null())
{
const GpuMat frame = _frame.getGpuMat();
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
GpuMat shrunk = _shrunk.getGpuMat();
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
setZero(channels, s);
cv::gpu::cvtColor(frame, gray, CV_BGR2GRAY, s);
createHogBins(s);
createLuvBins(frame, s);
cv::gpu::resize(channels, shrunk, cv::Size(), 1.f / shrinkage, 1.f / shrinkage, CV_INTER_AREA, s);
}
private:
void createHogBins(Stream& s)
{
static const int fw = gray.cols;
static const int fh = gray.rows;
fplane.create(fh * HOG_BINS, fw, CV_32FC1);
GpuMat dfdx(fplane, cv::Rect(0, 0, fw, fh));
GpuMat dfdy(fplane, cv::Rect(0, fh, fw, fh));
cv::gpu::Sobel(gray, dfdx, CV_32F, 1, 0, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
cv::gpu::Sobel(gray, dfdy, CV_32F, 0, 1, sobelBuf, 3, 1, cv::BORDER_DEFAULT, -1, s);
GpuMat mag(fplane, cv::Rect(0, 2 * fh, fw, fh));
GpuMat ang(fplane, cv::Rect(0, 3 * fh, fw, fh));
cv::gpu::cartToPolar(dfdx, dfdy, mag, ang, true, s);
// normolize magnitude to uchar interval and angles to 6 bins
GpuMat nmag(fplane, cv::Rect(0, 4 * fh, fw, fh));
GpuMat nang(fplane, cv::Rect(0, 5 * fh, fw, fh));
cv::gpu::multiply(mag, cv::Scalar::all(1.f / (8 *::log(2.0f))), nmag, 1, -1, s);
cv::gpu::multiply(ang, cv::Scalar::all(1.f / 60.f), nang, 1, -1, s);
//create uchar magnitude
GpuMat cmag(channels, cv::Rect(0, fh * HOG_BINS, fw, fh));
if (s)
s.enqueueConvert(nmag, cmag, CV_8UC1);
else
nmag.convertTo(cmag, CV_8UC1);
cudaStream_t stream = cv::gpu::StreamAccessor::getStream(s);
cv::gpu::device::icf::fillBins(channels, nang, fw, fh, HOG_BINS, stream);
}
void createLuvBins(const cv::gpu::GpuMat& colored, Stream& s)
{
static const int fw = colored.cols;
static const int fh = colored.rows;
cv::gpu::cvtColor(colored, luv, CV_BGR2Luv, s);
std::vector<GpuMat> splited;
for(int i = 0; i < LUV_BINS; ++i)
{
splited.push_back(GpuMat(channels, cv::Rect(0, fh * (7 + i), fw, fh)));
}
cv::gpu::split(luv, splited, s);
}
enum {HOG_BINS = 6, LUV_BINS = 3};
const int shrinkage;
const int bins;
GpuMat gray;
GpuMat luv;
GpuMat channels;
// preallocated buffer for floating point operations
GpuMat fplane;
GpuMat sobelBuf;
};
struct SeparablePreprocessor : public cv::gpu::ChannelsProcessor
{
SeparablePreprocessor(const int s, const int b) : cv::gpu::ChannelsProcessor(), shrinkage(s), bins(b) {}
virtual ~SeparablePreprocessor() {}
virtual void apply(InputArray _frame, OutputArray _shrunk, Stream& s = Stream::Null())
{
const GpuMat frame = _frame.getGpuMat();
cv::gpu::GaussianBlur(frame, bgr, cv::Size(3, 3), -1.0);
_shrunk.create(frame.rows * (4 + bins) / shrinkage, frame.cols / shrinkage, CV_8UC1);
GpuMat shrunk = _shrunk.getGpuMat();
channels.create(frame.rows * (4 + bins), frame.cols, CV_8UC1);
setZero(channels, s);
cv::gpu::cvtColor(bgr, gray, CV_BGR2GRAY);
cv::gpu::device::icf::gray2hog(gray, channels(cv::Rect(0, 0, bgr.cols, bgr.rows * (bins + 1))), bins);
cv::gpu::GpuMat luv(channels, cv::Rect(0, bgr.rows * (bins + 1), bgr.cols, bgr.rows * 3));
cv::gpu::device::icf::bgr2Luv(bgr, luv);
cv::gpu::device::icf::shrink(channels, shrunk);
}
private:
const int shrinkage;
const int bins;
GpuMat bgr;
GpuMat gray;
GpuMat channels;
};
}
cv::Ptr<cv::gpu::ChannelsProcessor> cv::gpu::ChannelsProcessor::create(const int s, const int b, const int m)
{
CV_Assert((m && SEPARABLE) || (m && GENERIC));
if (m && GENERIC)
return cv::Ptr<cv::gpu::ChannelsProcessor>(new GenricPreprocessor(s, b));
return cv::Ptr<cv::gpu::ChannelsProcessor>(new SeparablePreprocessor(s, b));
}
cv::gpu::ChannelsProcessor::ChannelsProcessor() { }
cv::gpu::ChannelsProcessor::~ChannelsProcessor() { }
#endif