148 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			148 lines
		
	
	
		
			4.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2011 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // Use of this source code is governed by a BSD-style license
 | |
| // that can be found in the COPYING file in the root of the source
 | |
| // tree. An additional intellectual property rights grant can be found
 | |
| // in the file PATENTS. All contributing project authors may
 | |
| // be found in the AUTHORS file in the root of the source tree.
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| // Quantize levels for specified number of quantization-levels ([2, 256]).
 | |
| // Min and max values are preserved (usual 0 and 255 for alpha plane).
 | |
| //
 | |
| // Author: Skal (pascal.massimino@gmail.com)
 | |
| 
 | |
| #include <assert.h>
 | |
| 
 | |
| #include "./quant_levels.h"
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #define NUM_SYMBOLS     256
 | |
| 
 | |
| #define MAX_ITER  6             // Maximum number of convergence steps.
 | |
| #define ERROR_THRESHOLD 1e-4    // MSE stopping criterion.
 | |
| 
 | |
| // -----------------------------------------------------------------------------
 | |
| // Quantize levels.
 | |
| 
 | |
| int QuantizeLevels(uint8_t* const data, int width, int height,
 | |
|                    int num_levels, uint64_t* const sse) {
 | |
|   int freq[NUM_SYMBOLS] = { 0 };
 | |
|   int q_level[NUM_SYMBOLS] = { 0 };
 | |
|   double inv_q_level[NUM_SYMBOLS] = { 0 };
 | |
|   int min_s = 255, max_s = 0;
 | |
|   const size_t data_size = height * width;
 | |
|   int i, num_levels_in, iter;
 | |
|   double last_err = 1.e38, err = 0.;
 | |
|   const double err_threshold = ERROR_THRESHOLD * data_size;
 | |
| 
 | |
|   if (data == NULL) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (width <= 0 || height <= 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   if (num_levels < 2 || num_levels > 256) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     size_t n;
 | |
|     num_levels_in = 0;
 | |
|     for (n = 0; n < data_size; ++n) {
 | |
|       num_levels_in += (freq[data[n]] == 0);
 | |
|       if (min_s > data[n]) min_s = data[n];
 | |
|       if (max_s < data[n]) max_s = data[n];
 | |
|       ++freq[data[n]];
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (num_levels_in <= num_levels) goto End;  // nothing to do!
 | |
| 
 | |
|   // Start with uniformly spread centroids.
 | |
|   for (i = 0; i < num_levels; ++i) {
 | |
|     inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
 | |
|   }
 | |
| 
 | |
|   // Fixed values. Won't be changed.
 | |
|   q_level[min_s] = 0;
 | |
|   q_level[max_s] = num_levels - 1;
 | |
|   assert(inv_q_level[0] == min_s);
 | |
|   assert(inv_q_level[num_levels - 1] == max_s);
 | |
| 
 | |
|   // k-Means iterations.
 | |
|   for (iter = 0; iter < MAX_ITER; ++iter) {
 | |
|     double q_sum[NUM_SYMBOLS] = { 0 };
 | |
|     double q_count[NUM_SYMBOLS] = { 0 };
 | |
|     int s, slot = 0;
 | |
| 
 | |
|     // Assign classes to representatives.
 | |
|     for (s = min_s; s <= max_s; ++s) {
 | |
|       // Keep track of the nearest neighbour 'slot'
 | |
|       while (slot < num_levels - 1 &&
 | |
|              2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
 | |
|         ++slot;
 | |
|       }
 | |
|       if (freq[s] > 0) {
 | |
|         q_sum[slot] += s * freq[s];
 | |
|         q_count[slot] += freq[s];
 | |
|       }
 | |
|       q_level[s] = slot;
 | |
|     }
 | |
| 
 | |
|     // Assign new representatives to classes.
 | |
|     if (num_levels > 2) {
 | |
|       for (slot = 1; slot < num_levels - 1; ++slot) {
 | |
|         const double count = q_count[slot];
 | |
|         if (count > 0.) {
 | |
|           inv_q_level[slot] = q_sum[slot] / count;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Compute convergence error.
 | |
|     err = 0.;
 | |
|     for (s = min_s; s <= max_s; ++s) {
 | |
|       const double error = s - inv_q_level[q_level[s]];
 | |
|       err += freq[s] * error * error;
 | |
|     }
 | |
| 
 | |
|     // Check for convergence: we stop as soon as the error is no
 | |
|     // longer improving.
 | |
|     if (last_err - err < err_threshold) break;
 | |
|     last_err = err;
 | |
|   }
 | |
| 
 | |
|   // Remap the alpha plane to quantized values.
 | |
|   {
 | |
|     // double->int rounding operation can be costly, so we do it
 | |
|     // once for all before remapping. We also perform the data[] -> slot
 | |
|     // mapping, while at it (avoid one indirection in the final loop).
 | |
|     uint8_t map[NUM_SYMBOLS];
 | |
|     int s;
 | |
|     size_t n;
 | |
|     for (s = min_s; s <= max_s; ++s) {
 | |
|       const int slot = q_level[s];
 | |
|       map[s] = (uint8_t)(inv_q_level[slot] + .5);
 | |
|     }
 | |
|     // Final pass.
 | |
|     for (n = 0; n < data_size; ++n) {
 | |
|       data[n] = map[data[n]];
 | |
|     }
 | |
|   }
 | |
|  End:
 | |
|   // Store sum of squared error if needed.
 | |
|   if (sse != NULL) *sse = (uint64_t)err;
 | |
| 
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }    // extern "C"
 | |
| #endif
 | 
