139 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
#include "opencv2/ml/ml.hpp"
 | 
						|
#include "opencv2/core/core_c.h"
 | 
						|
#include <stdio.h>
 | 
						|
#include <map>
 | 
						|
 | 
						|
static void help()
 | 
						|
{
 | 
						|
    printf(
 | 
						|
        "\nThis sample demonstrates how to use different decision trees and forests including boosting and random trees:\n"
 | 
						|
        "CvDTree dtree;\n"
 | 
						|
        "CvBoost boost;\n"
 | 
						|
        "CvRTrees rtrees;\n"
 | 
						|
        "CvERTrees ertrees;\n"
 | 
						|
        "CvGBTrees gbtrees;\n"
 | 
						|
        "Call:\n\t./tree_engine [-r <response_column>] [-c] <csv filename>\n"
 | 
						|
        "where -r <response_column> specified the 0-based index of the response (0 by default)\n"
 | 
						|
        "-c specifies that the response is categorical (it's ordered by default) and\n"
 | 
						|
        "<csv filename> is the name of training data file in comma-separated value format\n\n");
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int count_classes(CvMLData& data)
 | 
						|
{
 | 
						|
    cv::Mat r(data.get_responses());
 | 
						|
    std::map<int, int> rmap;
 | 
						|
    int i, n = (int)r.total();
 | 
						|
    for( i = 0; i < n; i++ )
 | 
						|
    {
 | 
						|
        float val = r.at<float>(i);
 | 
						|
        int ival = cvRound(val);
 | 
						|
        if( ival != val )
 | 
						|
            return -1;
 | 
						|
        rmap[ival] = 1;
 | 
						|
    }
 | 
						|
    return (int)rmap.size();
 | 
						|
}
 | 
						|
 | 
						|
static void print_result(float train_err, float test_err, const CvMat* _var_imp)
 | 
						|
{
 | 
						|
    printf( "train error    %f\n", train_err );
 | 
						|
    printf( "test error    %f\n\n", test_err );
 | 
						|
 | 
						|
    if (_var_imp)
 | 
						|
    {
 | 
						|
        cv::Mat var_imp(_var_imp), sorted_idx;
 | 
						|
        cv::sortIdx(var_imp, sorted_idx, CV_SORT_EVERY_ROW + CV_SORT_DESCENDING);
 | 
						|
 | 
						|
        printf( "variable importance:\n" );
 | 
						|
        int i, n = (int)var_imp.total();
 | 
						|
        int type = var_imp.type();
 | 
						|
        CV_Assert(type == CV_32F || type == CV_64F);
 | 
						|
 | 
						|
        for( i = 0; i < n; i++)
 | 
						|
        {
 | 
						|
            int k = sorted_idx.at<int>(i);
 | 
						|
            printf( "%d\t%f\n", k, type == CV_32F ? var_imp.at<float>(k) : var_imp.at<double>(k));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    printf("\n");
 | 
						|
}
 | 
						|
 | 
						|
int main(int argc, char** argv)
 | 
						|
{
 | 
						|
    if(argc < 2)
 | 
						|
    {
 | 
						|
        help();
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    const char* filename = 0;
 | 
						|
    int response_idx = 0;
 | 
						|
    bool categorical_response = false;
 | 
						|
 | 
						|
    for(int i = 1; i < argc; i++)
 | 
						|
    {
 | 
						|
        if(strcmp(argv[i], "-r") == 0)
 | 
						|
            sscanf(argv[++i], "%d", &response_idx);
 | 
						|
        else if(strcmp(argv[i], "-c") == 0)
 | 
						|
            categorical_response = true;
 | 
						|
        else if(argv[i][0] != '-' )
 | 
						|
            filename = argv[i];
 | 
						|
        else
 | 
						|
        {
 | 
						|
            printf("Error. Invalid option %s\n", argv[i]);
 | 
						|
            help();
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    printf("\nReading in %s...\n\n",filename);
 | 
						|
    CvDTree dtree;
 | 
						|
    CvBoost boost;
 | 
						|
    CvRTrees rtrees;
 | 
						|
    CvERTrees ertrees;
 | 
						|
    CvGBTrees gbtrees;
 | 
						|
 | 
						|
    CvMLData data;
 | 
						|
 | 
						|
 | 
						|
    CvTrainTestSplit spl( 0.5f );
 | 
						|
 | 
						|
    if ( data.read_csv( filename ) == 0)
 | 
						|
    {
 | 
						|
        data.set_response_idx( response_idx );
 | 
						|
        if(categorical_response)
 | 
						|
            data.change_var_type( response_idx, CV_VAR_CATEGORICAL );
 | 
						|
        data.set_train_test_split( &spl );
 | 
						|
 | 
						|
        printf("======DTREE=====\n");
 | 
						|
        dtree.train( &data, CvDTreeParams( 10, 2, 0, false, 16, 0, false, false, 0 ));
 | 
						|
        print_result( dtree.calc_error( &data, CV_TRAIN_ERROR), dtree.calc_error( &data, CV_TEST_ERROR ), dtree.get_var_importance() );
 | 
						|
 | 
						|
        if( categorical_response && count_classes(data) == 2 )
 | 
						|
        {
 | 
						|
        printf("======BOOST=====\n");
 | 
						|
        boost.train( &data, CvBoostParams(CvBoost::DISCRETE, 100, 0.95, 2, false, 0));
 | 
						|
        print_result( boost.calc_error( &data, CV_TRAIN_ERROR ), boost.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
 | 
						|
        }
 | 
						|
 | 
						|
        printf("======RTREES=====\n");
 | 
						|
        rtrees.train( &data, CvRTParams( 10, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
 | 
						|
        print_result( rtrees.calc_error( &data, CV_TRAIN_ERROR), rtrees.calc_error( &data, CV_TEST_ERROR ), rtrees.get_var_importance() );
 | 
						|
 | 
						|
        printf("======ERTREES=====\n");
 | 
						|
        ertrees.train( &data, CvRTParams( 18, 2, 0, false, 16, 0, true, 0, 100, 0, CV_TERMCRIT_ITER ));
 | 
						|
        print_result( ertrees.calc_error( &data, CV_TRAIN_ERROR), ertrees.calc_error( &data, CV_TEST_ERROR ), ertrees.get_var_importance() );
 | 
						|
 | 
						|
        printf("======GBTREES=====\n");
 | 
						|
        if (categorical_response)
 | 
						|
            gbtrees.train( &data, CvGBTreesParams(CvGBTrees::DEVIANCE_LOSS, 100, 0.1f, 0.8f, 5, false));
 | 
						|
        else
 | 
						|
            gbtrees.train( &data, CvGBTreesParams(CvGBTrees::SQUARED_LOSS, 100, 0.1f, 0.8f, 5, false));
 | 
						|
        print_result( gbtrees.calc_error( &data, CV_TRAIN_ERROR), gbtrees.calc_error( &data, CV_TEST_ERROR ), 0 ); //doesn't compute importance
 | 
						|
    }
 | 
						|
    else
 | 
						|
        printf("File can not be read");
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 |