56 lines
1.7 KiB
Python
56 lines
1.7 KiB
Python
import numpy as np
|
|
import cv2
|
|
|
|
help_message = '''
|
|
USAGE: peopledetect.py <image_names> ...
|
|
|
|
Press any key to continue, ESC to stop.
|
|
'''
|
|
|
|
def inside(r, q):
|
|
rx, ry, rw, rh = r
|
|
qx, qy, qw, qh = q
|
|
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
|
|
|
|
def draw_detections(img, rects, thickness = 1):
|
|
for x, y, w, h in rects:
|
|
# the HOG detector returns slightly larger rectangles than the real objects.
|
|
# so we slightly shrink the rectangles to get a nicer output.
|
|
pad_w, pad_h = int(0.15*w), int(0.05*h)
|
|
cv2.rectangle(img, (x+pad_w, y+pad_h), (x+w-pad_w, y+h-pad_h), (0, 255, 0), thickness)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import sys
|
|
from glob import glob
|
|
import itertools as it
|
|
|
|
print help_message
|
|
|
|
hog = cv2.HOGDescriptor()
|
|
hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() )
|
|
|
|
for fn in it.chain(*map(glob, sys.argv[1:])):
|
|
print fn, ' - ',
|
|
try:
|
|
img = cv2.imread(fn)
|
|
except:
|
|
print 'loading error'
|
|
continue
|
|
|
|
found = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
|
|
found_filtered = []
|
|
for ri, r in enumerate(found):
|
|
for qi, q in enumerate(found):
|
|
if ri != qi and inside(r, q):
|
|
break
|
|
else:
|
|
found_filtered.append(r)
|
|
draw_detections(img, found)
|
|
draw_detections(img, found_filtered, 3)
|
|
print '%d (%d) found' % (len(found_filtered), len(found))
|
|
cv2.imshow('img', img)
|
|
ch = 0xFF & cv2.waitKey()
|
|
if ch == 27:
|
|
break
|