392 lines
11 KiB
C++
392 lines
11 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_OPENCV_LEGACY
|
|
# include "opencv2/legacy.hpp"
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
using namespace cvtest;
|
|
|
|
#if defined(HAVE_XINE) || \
|
|
defined(HAVE_GSTREAMER) || \
|
|
defined(HAVE_QUICKTIME) || \
|
|
defined(HAVE_QTKIT) || \
|
|
defined(HAVE_AVFOUNDATION) || \
|
|
defined(HAVE_FFMPEG) || \
|
|
defined(WIN32) /* assume that we have ffmpeg */
|
|
|
|
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 1
|
|
#else
|
|
# define BUILD_WITH_VIDEO_INPUT_SUPPORT 0
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////
|
|
// FGDStatModel
|
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT && defined(HAVE_OPENCV_LEGACY)
|
|
|
|
namespace cv
|
|
{
|
|
template<> void DefaultDeleter<CvBGStatModel>::operator ()(CvBGStatModel* obj) const
|
|
{
|
|
cvReleaseBGStatModel(&obj);
|
|
}
|
|
}
|
|
|
|
PARAM_TEST_CASE(FGDStatModel, cv::gpu::DeviceInfo, std::string)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
std::string inputFile;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(FGDStatModel, Update)
|
|
{
|
|
cv::VideoCapture cap(inputFile);
|
|
ASSERT_TRUE(cap.isOpened());
|
|
|
|
cv::Mat frame;
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
IplImage ipl_frame = frame;
|
|
cv::Ptr<CvBGStatModel> model(cvCreateFGDStatModel(&ipl_frame));
|
|
|
|
cv::gpu::GpuMat d_frame(frame);
|
|
cv::Ptr<cv::gpu::BackgroundSubtractorFGD> d_fgd = cv::gpu::createBackgroundSubtractorFGD();
|
|
cv::gpu::GpuMat d_foreground, d_background;
|
|
std::vector< std::vector<cv::Point> > foreground_regions;
|
|
d_fgd->apply(d_frame, d_foreground);
|
|
|
|
for (int i = 0; i < 5; ++i)
|
|
{
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
ipl_frame = frame;
|
|
int gold_count = cvUpdateBGStatModel(&ipl_frame, model);
|
|
|
|
d_frame.upload(frame);
|
|
d_fgd->apply(d_frame, d_foreground);
|
|
d_fgd->getBackgroundImage(d_background);
|
|
d_fgd->getForegroundRegions(foreground_regions);
|
|
int count = (int) foreground_regions.size();
|
|
|
|
cv::Mat gold_background = cv::cvarrToMat(model->background);
|
|
cv::Mat gold_foreground = cv::cvarrToMat(model->foreground);
|
|
|
|
ASSERT_MAT_NEAR(gold_background, d_background, 1.0);
|
|
ASSERT_MAT_NEAR(gold_foreground, d_foreground, 0.0);
|
|
ASSERT_EQ(gold_count, count);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, FGDStatModel, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(std::string("768x576.avi"))));
|
|
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////
|
|
// MOG
|
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(UseGray, bool)
|
|
IMPLEMENT_PARAM_CLASS(LearningRate, double)
|
|
}
|
|
|
|
PARAM_TEST_CASE(MOG, cv::gpu::DeviceInfo, std::string, UseGray, LearningRate, UseRoi)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
std::string inputFile;
|
|
bool useGray;
|
|
double learningRate;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
|
|
|
|
useGray = GET_PARAM(2);
|
|
|
|
learningRate = GET_PARAM(3);
|
|
|
|
useRoi = GET_PARAM(4);
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(MOG, Update)
|
|
{
|
|
cv::VideoCapture cap(inputFile);
|
|
ASSERT_TRUE(cap.isOpened());
|
|
|
|
cv::Mat frame;
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG> mog = cv::gpu::createBackgroundSubtractorMOG();
|
|
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG> mog_gold = cv::createBackgroundSubtractorMOG();
|
|
cv::Mat foreground_gold;
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
{
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
if (useGray)
|
|
{
|
|
cv::Mat temp;
|
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
|
|
cv::swap(temp, frame);
|
|
}
|
|
|
|
mog->apply(loadMat(frame, useRoi), foreground, learningRate);
|
|
|
|
mog_gold->apply(frame, foreground_gold, learningRate);
|
|
|
|
ASSERT_MAT_NEAR(foreground_gold, foreground, 0.0);
|
|
}
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, MOG, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(std::string("768x576.avi")),
|
|
testing::Values(UseGray(true), UseGray(false)),
|
|
testing::Values(LearningRate(0.0), LearningRate(0.01)),
|
|
WHOLE_SUBMAT));
|
|
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////
|
|
// MOG2
|
|
|
|
#if BUILD_WITH_VIDEO_INPUT_SUPPORT
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(DetectShadow, bool)
|
|
}
|
|
|
|
PARAM_TEST_CASE(MOG2, cv::gpu::DeviceInfo, std::string, UseGray, DetectShadow, UseRoi)
|
|
{
|
|
cv::gpu::DeviceInfo devInfo;
|
|
std::string inputFile;
|
|
bool useGray;
|
|
bool detectShadow;
|
|
bool useRoi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
|
|
inputFile = std::string(cvtest::TS::ptr()->get_data_path()) + "video/" + GET_PARAM(1);
|
|
useGray = GET_PARAM(2);
|
|
detectShadow = GET_PARAM(3);
|
|
useRoi = GET_PARAM(4);
|
|
}
|
|
};
|
|
|
|
GPU_TEST_P(MOG2, Update)
|
|
{
|
|
cv::VideoCapture cap(inputFile);
|
|
ASSERT_TRUE(cap.isOpened());
|
|
|
|
cv::Mat frame;
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2 = cv::gpu::createBackgroundSubtractorMOG2();
|
|
mog2->setDetectShadows(detectShadow);
|
|
cv::gpu::GpuMat foreground = createMat(frame.size(), CV_8UC1, useRoi);
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = cv::createBackgroundSubtractorMOG2();
|
|
mog2_gold->setDetectShadows(detectShadow);
|
|
cv::Mat foreground_gold;
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
{
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
if (useGray)
|
|
{
|
|
cv::Mat temp;
|
|
cv::cvtColor(frame, temp, cv::COLOR_BGR2GRAY);
|
|
cv::swap(temp, frame);
|
|
}
|
|
|
|
mog2->apply(loadMat(frame, useRoi), foreground);
|
|
|
|
mog2_gold->apply(frame, foreground_gold);
|
|
|
|
if (detectShadow)
|
|
{
|
|
ASSERT_MAT_SIMILAR(foreground_gold, foreground, 1e-2);
|
|
}
|
|
else
|
|
{
|
|
ASSERT_MAT_NEAR(foreground_gold, foreground, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
GPU_TEST_P(MOG2, getBackgroundImage)
|
|
{
|
|
if (useGray)
|
|
return;
|
|
|
|
cv::VideoCapture cap(inputFile);
|
|
ASSERT_TRUE(cap.isOpened());
|
|
|
|
cv::Mat frame;
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2 = cv::gpu::createBackgroundSubtractorMOG2();
|
|
mog2->setDetectShadows(detectShadow);
|
|
cv::gpu::GpuMat foreground;
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorMOG2> mog2_gold = cv::createBackgroundSubtractorMOG2();
|
|
mog2_gold->setDetectShadows(detectShadow);
|
|
cv::Mat foreground_gold;
|
|
|
|
for (int i = 0; i < 10; ++i)
|
|
{
|
|
cap >> frame;
|
|
ASSERT_FALSE(frame.empty());
|
|
|
|
mog2->apply(loadMat(frame, useRoi), foreground);
|
|
|
|
mog2_gold->apply(frame, foreground_gold);
|
|
}
|
|
|
|
cv::gpu::GpuMat background = createMat(frame.size(), frame.type(), useRoi);
|
|
mog2->getBackgroundImage(background);
|
|
|
|
cv::Mat background_gold;
|
|
mog2_gold->getBackgroundImage(background_gold);
|
|
|
|
ASSERT_MAT_NEAR(background_gold, background, 0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, MOG2, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(std::string("768x576.avi")),
|
|
testing::Values(UseGray(true), UseGray(false)),
|
|
testing::Values(DetectShadow(true), DetectShadow(false)),
|
|
WHOLE_SUBMAT));
|
|
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////
|
|
// GMG
|
|
|
|
PARAM_TEST_CASE(GMG, cv::gpu::DeviceInfo, cv::Size, MatDepth, Channels, UseRoi)
|
|
{
|
|
};
|
|
|
|
GPU_TEST_P(GMG, Accuracy)
|
|
{
|
|
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
|
|
cv::gpu::setDevice(devInfo.deviceID());
|
|
const cv::Size size = GET_PARAM(1);
|
|
const int depth = GET_PARAM(2);
|
|
const int channels = GET_PARAM(3);
|
|
const bool useRoi = GET_PARAM(4);
|
|
|
|
const int type = CV_MAKE_TYPE(depth, channels);
|
|
|
|
const cv::Mat zeros(size, CV_8UC1, cv::Scalar::all(0));
|
|
const cv::Mat fullfg(size, CV_8UC1, cv::Scalar::all(255));
|
|
|
|
cv::Mat frame = randomMat(size, type, 0, 100);
|
|
cv::gpu::GpuMat d_frame = loadMat(frame, useRoi);
|
|
|
|
cv::Ptr<cv::BackgroundSubtractorGMG> gmg = cv::gpu::createBackgroundSubtractorGMG();
|
|
gmg->setNumFrames(5);
|
|
gmg->setSmoothingRadius(0);
|
|
|
|
cv::gpu::GpuMat d_fgmask = createMat(size, CV_8UC1, useRoi);
|
|
|
|
for (int i = 0; i < gmg->getNumFrames(); ++i)
|
|
{
|
|
gmg->apply(d_frame, d_fgmask);
|
|
|
|
// fgmask should be entirely background during training
|
|
ASSERT_MAT_NEAR(zeros, d_fgmask, 0);
|
|
}
|
|
|
|
frame = randomMat(size, type, 160, 255);
|
|
d_frame = loadMat(frame, useRoi);
|
|
gmg->apply(d_frame, d_fgmask);
|
|
|
|
// now fgmask should be entirely foreground
|
|
ASSERT_MAT_NEAR(fullfg, d_fgmask, 0);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(GPU_BgSegm, GMG, testing::Combine(
|
|
ALL_DEVICES,
|
|
DIFFERENT_SIZES,
|
|
testing::Values(MatType(CV_8U), MatType(CV_16U), MatType(CV_32F)),
|
|
testing::Values(Channels(1), Channels(3), Channels(4)),
|
|
WHOLE_SUBMAT));
|
|
|
|
#endif // HAVE_CUDA
|