1. someMatrix.data -> someMatrix.prt() 2. someMatrix.data + someMatrix.step * lineIndex -> someMatrix.ptr( lineIndex ) 3. (SomeType*) someMatrix.data -> someMatrix.ptr<SomeType>() 4. someMatrix.data -> !someMatrix.empty() ( or !someMatrix.data -> someMatrix.empty() ) in logical expressions
		
			
				
	
	
		
			466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                        Intel License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of Intel Corporation may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
#include "test_precomp.hpp"
 | 
						|
 | 
						|
using namespace cv;
 | 
						|
using namespace std;
 | 
						|
 | 
						|
#define OCL_TUNING_MODE 0
 | 
						|
#if OCL_TUNING_MODE
 | 
						|
#define OCL_TUNING_MODE_ONLY(code) code
 | 
						|
#else
 | 
						|
#define OCL_TUNING_MODE_ONLY(code)
 | 
						|
#endif
 | 
						|
 | 
						|
// image moments
 | 
						|
class CV_MomentsTest : public cvtest::ArrayTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_MomentsTest();
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    enum { MOMENT_COUNT = 25 };
 | 
						|
    int prepare_test_case( int test_case_idx );
 | 
						|
    void prepare_to_validation( int /*test_case_idx*/ );
 | 
						|
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
 | 
						|
    void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
 | 
						|
    double get_success_error_level( int test_case_idx, int i, int j );
 | 
						|
    void run_func();
 | 
						|
    int coi;
 | 
						|
    bool is_binary;
 | 
						|
    bool try_umat;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
CV_MomentsTest::CV_MomentsTest()
 | 
						|
{
 | 
						|
    test_array[INPUT].push_back(NULL);
 | 
						|
    test_array[OUTPUT].push_back(NULL);
 | 
						|
    test_array[REF_OUTPUT].push_back(NULL);
 | 
						|
    coi = -1;
 | 
						|
    is_binary = false;
 | 
						|
    OCL_TUNING_MODE_ONLY(test_case_count = 10);
 | 
						|
    //element_wise_relative_error = false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_MomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
 | 
						|
{
 | 
						|
    cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
 | 
						|
    int depth = CV_MAT_DEPTH(type);
 | 
						|
 | 
						|
    if( depth == CV_16U )
 | 
						|
    {
 | 
						|
        low = Scalar::all(0);
 | 
						|
        high = Scalar::all(1000);
 | 
						|
    }
 | 
						|
    else if( depth == CV_16S )
 | 
						|
    {
 | 
						|
        low = Scalar::all(-1000);
 | 
						|
        high = Scalar::all(1000);
 | 
						|
    }
 | 
						|
    else if( depth == CV_32F )
 | 
						|
    {
 | 
						|
        low = Scalar::all(-1);
 | 
						|
        high = Scalar::all(1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void CV_MomentsTest::get_test_array_types_and_sizes( int test_case_idx,
 | 
						|
                                                vector<vector<Size> >& sizes, vector<vector<int> >& types )
 | 
						|
{
 | 
						|
    RNG& rng = ts->get_rng();
 | 
						|
    cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
 | 
						|
    int cn = (cvtest::randInt(rng) % 4) + 1;
 | 
						|
    int depth = cvtest::randInt(rng) % 4;
 | 
						|
    depth = depth == 0 ? CV_8U : depth == 1 ? CV_16U : depth == 2 ? CV_16S : CV_32F;
 | 
						|
 | 
						|
    is_binary = cvtest::randInt(rng) % 2 != 0;
 | 
						|
    if( depth == 0 && !is_binary )
 | 
						|
        try_umat = cvtest::randInt(rng) % 5 != 0;
 | 
						|
    else
 | 
						|
        try_umat = cvtest::randInt(rng) % 2 != 0;
 | 
						|
 | 
						|
    if( cn == 2 || try_umat )
 | 
						|
        cn = 1;
 | 
						|
 | 
						|
    OCL_TUNING_MODE_ONLY(
 | 
						|
    cn = 1;
 | 
						|
    depth = CV_8U;
 | 
						|
    try_umat = true;
 | 
						|
    is_binary = false;
 | 
						|
    sizes[INPUT][0] = Size(1024,768)
 | 
						|
    );
 | 
						|
 | 
						|
    types[INPUT][0] = CV_MAKETYPE(depth, cn);
 | 
						|
    types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
 | 
						|
    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(MOMENT_COUNT,1);
 | 
						|
    if(CV_MAT_DEPTH(types[INPUT][0])>=CV_32S)
 | 
						|
        sizes[INPUT][0].width = MAX(sizes[INPUT][0].width, 3);
 | 
						|
 | 
						|
    coi = 0;
 | 
						|
    cvmat_allowed = true;
 | 
						|
    if( cn > 1 )
 | 
						|
    {
 | 
						|
        coi = cvtest::randInt(rng) % cn;
 | 
						|
        cvmat_allowed = false;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
double CV_MomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
 | 
						|
{
 | 
						|
    int depth = test_mat[INPUT][0].depth();
 | 
						|
    return depth != CV_32F ? FLT_EPSILON*10 : FLT_EPSILON*100;
 | 
						|
}
 | 
						|
 | 
						|
int CV_MomentsTest::prepare_test_case( int test_case_idx )
 | 
						|
{
 | 
						|
    int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
 | 
						|
    if( code > 0 )
 | 
						|
    {
 | 
						|
        int cn = test_mat[INPUT][0].channels();
 | 
						|
        if( cn > 1 )
 | 
						|
            cvSetImageCOI( (IplImage*)test_array[INPUT][0], coi + 1 );
 | 
						|
    }
 | 
						|
 | 
						|
    return code;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_MomentsTest::run_func()
 | 
						|
{
 | 
						|
    CvMoments* m = (CvMoments*)test_mat[OUTPUT][0].ptr<double>();
 | 
						|
    double* others = (double*)(m + 1);
 | 
						|
    if( try_umat )
 | 
						|
    {
 | 
						|
        UMat u;
 | 
						|
        test_mat[INPUT][0].clone().copyTo(u);
 | 
						|
        OCL_TUNING_MODE_ONLY(
 | 
						|
            static double ttime = 0;
 | 
						|
            static int ncalls = 0;
 | 
						|
            moments(u, is_binary != 0);
 | 
						|
            double t = (double)getTickCount());
 | 
						|
        Moments new_m = moments(u, is_binary != 0);
 | 
						|
        OCL_TUNING_MODE_ONLY(
 | 
						|
            ttime += (double)getTickCount() - t;
 | 
						|
            ncalls++;
 | 
						|
            printf("%g\n", ttime/ncalls/u.total()));
 | 
						|
        *m = new_m;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        cvMoments( test_array[INPUT][0], m, is_binary );
 | 
						|
 | 
						|
    others[0] = cvGetNormalizedCentralMoment( m, 2, 0 );
 | 
						|
    others[1] = cvGetNormalizedCentralMoment( m, 1, 1 );
 | 
						|
    others[2] = cvGetNormalizedCentralMoment( m, 0, 2 );
 | 
						|
    others[3] = cvGetNormalizedCentralMoment( m, 3, 0 );
 | 
						|
    others[4] = cvGetNormalizedCentralMoment( m, 2, 1 );
 | 
						|
    others[5] = cvGetNormalizedCentralMoment( m, 1, 2 );
 | 
						|
    others[6] = cvGetNormalizedCentralMoment( m, 0, 3 );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_MomentsTest::prepare_to_validation( int /*test_case_idx*/ )
 | 
						|
{
 | 
						|
    Mat& src = test_mat[INPUT][0];
 | 
						|
    CvMoments m;
 | 
						|
    double* mdata = test_mat[REF_OUTPUT][0].ptr<double>();
 | 
						|
    int depth = src.depth();
 | 
						|
    int cn = src.channels();
 | 
						|
    int i, y, x, cols = src.cols;
 | 
						|
    double xc = 0., yc = 0.;
 | 
						|
 | 
						|
    memset( &m, 0, sizeof(m));
 | 
						|
 | 
						|
    for( y = 0; y < src.rows; y++ )
 | 
						|
    {
 | 
						|
        double s0 = 0, s1 = 0, s2 = 0, s3 = 0;
 | 
						|
        uchar* ptr = src.ptr(y);
 | 
						|
        for( x = 0; x < cols; x++ )
 | 
						|
        {
 | 
						|
            double val;
 | 
						|
            if( depth == CV_8U )
 | 
						|
                val = ptr[x*cn + coi];
 | 
						|
            else if( depth == CV_16U )
 | 
						|
                val = ((ushort*)ptr)[x*cn + coi];
 | 
						|
            else if( depth == CV_16S )
 | 
						|
                val = ((short*)ptr)[x*cn + coi];
 | 
						|
            else
 | 
						|
                val = ((float*)ptr)[x*cn + coi];
 | 
						|
 | 
						|
            if( is_binary )
 | 
						|
                val = val != 0;
 | 
						|
 | 
						|
            s0 += val;
 | 
						|
            s1 += val*x;
 | 
						|
            s2 += val*x*x;
 | 
						|
            s3 += ((val*x)*x)*x;
 | 
						|
        }
 | 
						|
 | 
						|
        m.m00 += s0;
 | 
						|
        m.m01 += s0*y;
 | 
						|
        m.m02 += (s0*y)*y;
 | 
						|
        m.m03 += ((s0*y)*y)*y;
 | 
						|
 | 
						|
        m.m10 += s1;
 | 
						|
        m.m11 += s1*y;
 | 
						|
        m.m12 += (s1*y)*y;
 | 
						|
 | 
						|
        m.m20 += s2;
 | 
						|
        m.m21 += s2*y;
 | 
						|
 | 
						|
        m.m30 += s3;
 | 
						|
    }
 | 
						|
 | 
						|
    if( m.m00 != 0 )
 | 
						|
    {
 | 
						|
        xc = m.m10/m.m00, yc = m.m01/m.m00;
 | 
						|
        m.inv_sqrt_m00 = 1./sqrt(fabs(m.m00));
 | 
						|
    }
 | 
						|
 | 
						|
    for( y = 0; y < src.rows; y++ )
 | 
						|
    {
 | 
						|
        double s0 = 0, s1 = 0, s2 = 0, s3 = 0, y1 = y - yc;
 | 
						|
        uchar* ptr = src.ptr(y);
 | 
						|
        for( x = 0; x < cols; x++ )
 | 
						|
        {
 | 
						|
            double val, x1 = x - xc;
 | 
						|
            if( depth == CV_8U )
 | 
						|
                val = ptr[x*cn + coi];
 | 
						|
            else if( depth == CV_16U )
 | 
						|
                val = ((ushort*)ptr)[x*cn + coi];
 | 
						|
            else if( depth == CV_16S )
 | 
						|
                val = ((short*)ptr)[x*cn + coi];
 | 
						|
            else
 | 
						|
                val = ((float*)ptr)[x*cn + coi];
 | 
						|
 | 
						|
            if( is_binary )
 | 
						|
                val = val != 0;
 | 
						|
 | 
						|
            s0 += val;
 | 
						|
            s1 += val*x1;
 | 
						|
            s2 += val*x1*x1;
 | 
						|
            s3 += ((val*x1)*x1)*x1;
 | 
						|
        }
 | 
						|
 | 
						|
        m.mu02 += s0*y1*y1;
 | 
						|
        m.mu03 += ((s0*y1)*y1)*y1;
 | 
						|
 | 
						|
        m.mu11 += s1*y1;
 | 
						|
        m.mu12 += (s1*y1)*y1;
 | 
						|
 | 
						|
        m.mu20 += s2;
 | 
						|
        m.mu21 += s2*y1;
 | 
						|
 | 
						|
        m.mu30 += s3;
 | 
						|
    }
 | 
						|
 | 
						|
    memcpy( mdata, &m, sizeof(m));
 | 
						|
    mdata += sizeof(m)/sizeof(m.m00);
 | 
						|
 | 
						|
    /* calc normalized moments */
 | 
						|
    {
 | 
						|
        double inv_m00 = m.inv_sqrt_m00*m.inv_sqrt_m00;
 | 
						|
        double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */
 | 
						|
        double s3 = s2*m.inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */
 | 
						|
 | 
						|
        mdata[0] = m.mu20 * s2;
 | 
						|
        mdata[1] = m.mu11 * s2;
 | 
						|
        mdata[2] = m.mu02 * s2;
 | 
						|
 | 
						|
        mdata[3] = m.mu30 * s3;
 | 
						|
        mdata[4] = m.mu21 * s3;
 | 
						|
        mdata[5] = m.mu12 * s3;
 | 
						|
        mdata[6] = m.mu03 * s3;
 | 
						|
    }
 | 
						|
 | 
						|
    double* a = test_mat[REF_OUTPUT][0].ptr<double>();
 | 
						|
    double* b = test_mat[OUTPUT][0].ptr<double>();
 | 
						|
    for( i = 0; i < MOMENT_COUNT; i++ )
 | 
						|
    {
 | 
						|
        if( fabs(a[i]) < 1e-3 )
 | 
						|
            a[i] = 0;
 | 
						|
        if( fabs(b[i]) < 1e-3 )
 | 
						|
            b[i] = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Hu invariants
 | 
						|
class CV_HuMomentsTest : public cvtest::ArrayTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_HuMomentsTest();
 | 
						|
 | 
						|
protected:
 | 
						|
 | 
						|
    enum { MOMENT_COUNT = 18, HU_MOMENT_COUNT = 7 };
 | 
						|
 | 
						|
    int prepare_test_case( int test_case_idx );
 | 
						|
    void prepare_to_validation( int /*test_case_idx*/ );
 | 
						|
    void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
 | 
						|
    void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
 | 
						|
    double get_success_error_level( int test_case_idx, int i, int j );
 | 
						|
    void run_func();
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
CV_HuMomentsTest::CV_HuMomentsTest()
 | 
						|
{
 | 
						|
    test_array[INPUT].push_back(NULL);
 | 
						|
    test_array[OUTPUT].push_back(NULL);
 | 
						|
    test_array[REF_OUTPUT].push_back(NULL);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_HuMomentsTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
 | 
						|
{
 | 
						|
    cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
 | 
						|
    low = Scalar::all(-10000);
 | 
						|
    high = Scalar::all(10000);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_HuMomentsTest::get_test_array_types_and_sizes( int test_case_idx,
 | 
						|
                                                vector<vector<Size> >& sizes, vector<vector<int> >& types )
 | 
						|
{
 | 
						|
    cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
 | 
						|
    types[INPUT][0] = types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_64FC1;
 | 
						|
    sizes[INPUT][0] = cvSize(MOMENT_COUNT,1);
 | 
						|
    sizes[OUTPUT][0] = sizes[REF_OUTPUT][0] = cvSize(HU_MOMENT_COUNT,1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
double CV_HuMomentsTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
 | 
						|
{
 | 
						|
    return FLT_EPSILON;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
int CV_HuMomentsTest::prepare_test_case( int test_case_idx )
 | 
						|
{
 | 
						|
    int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
 | 
						|
    if( code > 0 )
 | 
						|
    {
 | 
						|
        // ...
 | 
						|
    }
 | 
						|
 | 
						|
    return code;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_HuMomentsTest::run_func()
 | 
						|
{
 | 
						|
    cvGetHuMoments( test_mat[INPUT][0].ptr<CvMoments>(),
 | 
						|
                    test_mat[OUTPUT][0].ptr<CvHuMoments>() );
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void CV_HuMomentsTest::prepare_to_validation( int /*test_case_idx*/ )
 | 
						|
{
 | 
						|
    CvMoments* m = test_mat[INPUT][0].ptr<CvMoments>();
 | 
						|
    CvHuMoments* hu = test_mat[REF_OUTPUT][0].ptr<CvHuMoments>();
 | 
						|
 | 
						|
    double inv_m00 = m->inv_sqrt_m00*m->inv_sqrt_m00;
 | 
						|
    double s2 = inv_m00*inv_m00; /* 1./(m00 ^ (2/2 + 1)) */
 | 
						|
    double s3 = s2*m->inv_sqrt_m00; /* 1./(m00 ^ (3/2 + 1)) */
 | 
						|
 | 
						|
    double nu20 = m->mu20 * s2;
 | 
						|
    double nu11 = m->mu11 * s2;
 | 
						|
    double nu02 = m->mu02 * s2;
 | 
						|
 | 
						|
    double nu30 = m->mu30 * s3;
 | 
						|
    double nu21 = m->mu21 * s3;
 | 
						|
    double nu12 = m->mu12 * s3;
 | 
						|
    double nu03 = m->mu03 * s3;
 | 
						|
 | 
						|
    #undef sqr
 | 
						|
    #define sqr(a) ((a)*(a))
 | 
						|
 | 
						|
    hu->hu1 = nu20 + nu02;
 | 
						|
    hu->hu2 = sqr(nu20 - nu02) + 4*sqr(nu11);
 | 
						|
    hu->hu3 = sqr(nu30 - 3*nu12) + sqr(3*nu21 - nu03);
 | 
						|
    hu->hu4 = sqr(nu30 + nu12) + sqr(nu21 + nu03);
 | 
						|
    hu->hu5 = (nu30 - 3*nu12)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) +
 | 
						|
            (3*nu21 - nu03)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03));
 | 
						|
    hu->hu6 = (nu20 - nu02)*(sqr(nu30 + nu12) - sqr(nu21 + nu03)) +
 | 
						|
            4*nu11*(nu30 + nu12)*(nu21 + nu03);
 | 
						|
    hu->hu7 = (3*nu21 - nu03)*(nu30 + nu12)*(sqr(nu30 + nu12) - 3*sqr(nu21 + nu03)) +
 | 
						|
            (3*nu12 - nu30)*(nu21 + nu03)*(3*sqr(nu30 + nu12) - sqr(nu21 + nu03));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
TEST(Imgproc_Moments, accuracy) { CV_MomentsTest test; test.safe_run(); }
 | 
						|
TEST(Imgproc_HuMoments, accuracy) { CV_HuMomentsTest test; test.safe_run(); }
 | 
						|
 | 
						|
class CV_SmallContourMomentTest : public cvtest::BaseTest
 | 
						|
{
 | 
						|
public:
 | 
						|
    CV_SmallContourMomentTest() {}
 | 
						|
    ~CV_SmallContourMomentTest() {}
 | 
						|
protected:
 | 
						|
    void run(int)
 | 
						|
    {
 | 
						|
        try
 | 
						|
        {
 | 
						|
            vector<Point> points;
 | 
						|
            points.push_back(Point(50, 56));
 | 
						|
            points.push_back(Point(53, 53));
 | 
						|
            points.push_back(Point(46, 54));
 | 
						|
            points.push_back(Point(49, 51));
 | 
						|
 | 
						|
            Moments m = moments(points, false);
 | 
						|
            double area = contourArea(points);
 | 
						|
 | 
						|
            CV_Assert( m.m00 == 0 && m.m01 == 0 && m.m10 == 0 && area == 0 );
 | 
						|
        }
 | 
						|
        catch(...)
 | 
						|
        {
 | 
						|
            ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
 | 
						|
        }
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
TEST(Imgproc_ContourMoment, small) { CV_SmallContourMomentTest test; test.safe_run(); }
 |