491 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* strsm.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Subroutine */ int strsm_(char *side, char *uplo, char *transa, char *diag, 
 | |
| 	integer *m, integer *n, real *alpha, real *a, integer *lda, real *b, 
 | |
| 	integer *ldb)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j, k, info;
 | |
|     real temp;
 | |
|     logical lside;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer nrowa;
 | |
|     logical upper;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *);
 | |
|     logical nounit;
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  STRSM  solves one of the matrix equations */
 | |
| 
 | |
| /*     op( A )*X = alpha*B,   or   X*op( A ) = alpha*B, */
 | |
| 
 | |
| /*  where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
 | |
| /*  non-unit,  upper or lower triangular matrix  and  op( A )  is one  of */
 | |
| 
 | |
| /*     op( A ) = A   or   op( A ) = A'. */
 | |
| 
 | |
| /*  The matrix X is overwritten on B. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========== */
 | |
| 
 | |
| /*  SIDE   - CHARACTER*1. */
 | |
| /*           On entry, SIDE specifies whether op( A ) appears on the left */
 | |
| /*           or right of X as follows: */
 | |
| 
 | |
| /*              SIDE = 'L' or 'l'   op( A )*X = alpha*B. */
 | |
| 
 | |
| /*              SIDE = 'R' or 'r'   X*op( A ) = alpha*B. */
 | |
| 
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  UPLO   - CHARACTER*1. */
 | |
| /*           On entry, UPLO specifies whether the matrix A is an upper or */
 | |
| /*           lower triangular matrix as follows: */
 | |
| 
 | |
| /*              UPLO = 'U' or 'u'   A is an upper triangular matrix. */
 | |
| 
 | |
| /*              UPLO = 'L' or 'l'   A is a lower triangular matrix. */
 | |
| 
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  TRANSA - CHARACTER*1. */
 | |
| /*           On entry, TRANSA specifies the form of op( A ) to be used in */
 | |
| /*           the matrix multiplication as follows: */
 | |
| 
 | |
| /*              TRANSA = 'N' or 'n'   op( A ) = A. */
 | |
| 
 | |
| /*              TRANSA = 'T' or 't'   op( A ) = A'. */
 | |
| 
 | |
| /*              TRANSA = 'C' or 'c'   op( A ) = A'. */
 | |
| 
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  DIAG   - CHARACTER*1. */
 | |
| /*           On entry, DIAG specifies whether or not A is unit triangular */
 | |
| /*           as follows: */
 | |
| 
 | |
| /*              DIAG = 'U' or 'u'   A is assumed to be unit triangular. */
 | |
| 
 | |
| /*              DIAG = 'N' or 'n'   A is not assumed to be unit */
 | |
| /*                                  triangular. */
 | |
| 
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  M      - INTEGER. */
 | |
| /*           On entry, M specifies the number of rows of B. M must be at */
 | |
| /*           least zero. */
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  N      - INTEGER. */
 | |
| /*           On entry, N specifies the number of columns of B.  N must be */
 | |
| /*           at least zero. */
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  ALPHA  - REAL            . */
 | |
| /*           On entry,  ALPHA specifies the scalar  alpha. When  alpha is */
 | |
| /*           zero then  A is not referenced and  B need not be set before */
 | |
| /*           entry. */
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  A      - REAL             array of DIMENSION ( LDA, k ), where k is m */
 | |
| /*           when  SIDE = 'L' or 'l'  and is  n  when  SIDE = 'R' or 'r'. */
 | |
| /*           Before entry  with  UPLO = 'U' or 'u',  the  leading  k by k */
 | |
| /*           upper triangular part of the array  A must contain the upper */
 | |
| /*           triangular matrix  and the strictly lower triangular part of */
 | |
| /*           A is not referenced. */
 | |
| /*           Before entry  with  UPLO = 'L' or 'l',  the  leading  k by k */
 | |
| /*           lower triangular part of the array  A must contain the lower */
 | |
| /*           triangular matrix  and the strictly upper triangular part of */
 | |
| /*           A is not referenced. */
 | |
| /*           Note that when  DIAG = 'U' or 'u',  the diagonal elements of */
 | |
| /*           A  are not referenced either,  but are assumed to be  unity. */
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  LDA    - INTEGER. */
 | |
| /*           On entry, LDA specifies the first dimension of A as declared */
 | |
| /*           in the calling (sub) program.  When  SIDE = 'L' or 'l'  then */
 | |
| /*           LDA  must be at least  max( 1, m ),  when  SIDE = 'R' or 'r' */
 | |
| /*           then LDA must be at least max( 1, n ). */
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| /*  B      - REAL             array of DIMENSION ( LDB, n ). */
 | |
| /*           Before entry,  the leading  m by n part of the array  B must */
 | |
| /*           contain  the  right-hand  side  matrix  B,  and  on exit  is */
 | |
| /*           overwritten by the solution matrix  X. */
 | |
| 
 | |
| /*  LDB    - INTEGER. */
 | |
| /*           On entry, LDB specifies the first dimension of B as declared */
 | |
| /*           in  the  calling  (sub)  program.   LDB  must  be  at  least */
 | |
| /*           max( 1, m ). */
 | |
| /*           Unchanged on exit. */
 | |
| 
 | |
| 
 | |
| /*  Level 3 Blas routine. */
 | |
| 
 | |
| 
 | |
| /*  -- Written on 8-February-1989. */
 | |
| /*     Jack Dongarra, Argonne National Laboratory. */
 | |
| /*     Iain Duff, AERE Harwell. */
 | |
| /*     Jeremy Du Croz, Numerical Algorithms Group Ltd. */
 | |
| /*     Sven Hammarling, Numerical Algorithms Group Ltd. */
 | |
| 
 | |
| 
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1;
 | |
|     b -= b_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     lside = lsame_(side, "L");
 | |
|     if (lside) {
 | |
| 	nrowa = *m;
 | |
|     } else {
 | |
| 	nrowa = *n;
 | |
|     }
 | |
|     nounit = lsame_(diag, "N");
 | |
|     upper = lsame_(uplo, "U");
 | |
| 
 | |
|     info = 0;
 | |
|     if (! lside && ! lsame_(side, "R")) {
 | |
| 	info = 1;
 | |
|     } else if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	info = 2;
 | |
|     } else if (! lsame_(transa, "N") && ! lsame_(transa, 
 | |
| 	     "T") && ! lsame_(transa, "C")) {
 | |
| 	info = 3;
 | |
|     } else if (! lsame_(diag, "U") && ! lsame_(diag, 
 | |
| 	    "N")) {
 | |
| 	info = 4;
 | |
|     } else if (*m < 0) {
 | |
| 	info = 5;
 | |
|     } else if (*n < 0) {
 | |
| 	info = 6;
 | |
|     } else if (*lda < max(1,nrowa)) {
 | |
| 	info = 9;
 | |
|     } else if (*ldb < max(1,*m)) {
 | |
| 	info = 11;
 | |
|     }
 | |
|     if (info != 0) {
 | |
| 	xerbla_("STRSM ", &info);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     And when  alpha.eq.zero. */
 | |
| 
 | |
|     if (*alpha == 0.f) {
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = *m;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		b[i__ + j * b_dim1] = 0.f;
 | |
| /* L10: */
 | |
| 	    }
 | |
| /* L20: */
 | |
| 	}
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Start the operations. */
 | |
| 
 | |
|     if (lside) {
 | |
| 	if (lsame_(transa, "N")) {
 | |
| 
 | |
| /*           Form  B := alpha*inv( A )*B. */
 | |
| 
 | |
| 	    if (upper) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    if (*alpha != 1.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 | |
| 				    ;
 | |
| /* L30: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    for (k = *m; k >= 1; --k) {
 | |
| 			if (b[k + j * b_dim1] != 0.f) {
 | |
| 			    if (nounit) {
 | |
| 				b[k + j * b_dim1] /= a[k + k * a_dim1];
 | |
| 			    }
 | |
| 			    i__2 = k - 1;
 | |
| 			    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
 | |
| 					i__ + k * a_dim1];
 | |
| /* L40: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L50: */
 | |
| 		    }
 | |
| /* L60: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    if (*alpha != 1.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 | |
| 				    ;
 | |
| /* L70: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__2 = *m;
 | |
| 		    for (k = 1; k <= i__2; ++k) {
 | |
| 			if (b[k + j * b_dim1] != 0.f) {
 | |
| 			    if (nounit) {
 | |
| 				b[k + j * b_dim1] /= a[k + k * a_dim1];
 | |
| 			    }
 | |
| 			    i__3 = *m;
 | |
| 			    for (i__ = k + 1; i__ <= i__3; ++i__) {
 | |
| 				b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
 | |
| 					i__ + k * a_dim1];
 | |
| /* L80: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L90: */
 | |
| 		    }
 | |
| /* L100: */
 | |
| 		}
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Form  B := alpha*inv( A' )*B. */
 | |
| 
 | |
| 	    if (upper) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			temp = *alpha * b[i__ + j * b_dim1];
 | |
| 			i__3 = i__ - 1;
 | |
| 			for (k = 1; k <= i__3; ++k) {
 | |
| 			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
 | |
| /* L110: */
 | |
| 			}
 | |
| 			if (nounit) {
 | |
| 			    temp /= a[i__ + i__ * a_dim1];
 | |
| 			}
 | |
| 			b[i__ + j * b_dim1] = temp;
 | |
| /* L120: */
 | |
| 		    }
 | |
| /* L130: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    for (i__ = *m; i__ >= 1; --i__) {
 | |
| 			temp = *alpha * b[i__ + j * b_dim1];
 | |
| 			i__2 = *m;
 | |
| 			for (k = i__ + 1; k <= i__2; ++k) {
 | |
| 			    temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
 | |
| /* L140: */
 | |
| 			}
 | |
| 			if (nounit) {
 | |
| 			    temp /= a[i__ + i__ * a_dim1];
 | |
| 			}
 | |
| 			b[i__ + j * b_dim1] = temp;
 | |
| /* L150: */
 | |
| 		    }
 | |
| /* L160: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else {
 | |
| 	if (lsame_(transa, "N")) {
 | |
| 
 | |
| /*           Form  B := alpha*B*inv( A ). */
 | |
| 
 | |
| 	    if (upper) {
 | |
| 		i__1 = *n;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    if (*alpha != 1.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 | |
| 				    ;
 | |
| /* L170: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__2 = j - 1;
 | |
| 		    for (k = 1; k <= i__2; ++k) {
 | |
| 			if (a[k + j * a_dim1] != 0.f) {
 | |
| 			    i__3 = *m;
 | |
| 			    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
 | |
| 					i__ + k * b_dim1];
 | |
| /* L180: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L190: */
 | |
| 		    }
 | |
| 		    if (nounit) {
 | |
| 			temp = 1.f / a[j + j * a_dim1];
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
 | |
| /* L200: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L210: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		for (j = *n; j >= 1; --j) {
 | |
| 		    if (*alpha != 1.f) {
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
 | |
| 				    ;
 | |
| /* L220: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = *n;
 | |
| 		    for (k = j + 1; k <= i__1; ++k) {
 | |
| 			if (a[k + j * a_dim1] != 0.f) {
 | |
| 			    i__2 = *m;
 | |
| 			    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 				b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
 | |
| 					i__ + k * b_dim1];
 | |
| /* L230: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L240: */
 | |
| 		    }
 | |
| 		    if (nounit) {
 | |
| 			temp = 1.f / a[j + j * a_dim1];
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
 | |
| /* L250: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L260: */
 | |
| 		}
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           Form  B := alpha*B*inv( A' ). */
 | |
| 
 | |
| 	    if (upper) {
 | |
| 		for (k = *n; k >= 1; --k) {
 | |
| 		    if (nounit) {
 | |
| 			temp = 1.f / a[k + k * a_dim1];
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
 | |
| /* L270: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			if (a[j + k * a_dim1] != 0.f) {
 | |
| 			    temp = a[j + k * a_dim1];
 | |
| 			    i__2 = *m;
 | |
| 			    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 				b[i__ + j * b_dim1] -= temp * b[i__ + k * 
 | |
| 					b_dim1];
 | |
| /* L280: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L290: */
 | |
| 		    }
 | |
| 		    if (*alpha != 1.f) {
 | |
| 			i__1 = *m;
 | |
| 			for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
 | |
| 				    ;
 | |
| /* L300: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L310: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = *n;
 | |
| 		for (k = 1; k <= i__1; ++k) {
 | |
| 		    if (nounit) {
 | |
| 			temp = 1.f / a[k + k * a_dim1];
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
 | |
| /* L320: */
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__2 = *n;
 | |
| 		    for (j = k + 1; j <= i__2; ++j) {
 | |
| 			if (a[j + k * a_dim1] != 0.f) {
 | |
| 			    temp = a[j + k * a_dim1];
 | |
| 			    i__3 = *m;
 | |
| 			    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 				b[i__ + j * b_dim1] -= temp * b[i__ + k * 
 | |
| 					b_dim1];
 | |
| /* L330: */
 | |
| 			    }
 | |
| 			}
 | |
| /* L340: */
 | |
| 		    }
 | |
| 		    if (*alpha != 1.f) {
 | |
| 			i__2 = *m;
 | |
| 			for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			    b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
 | |
| 				    ;
 | |
| /* L350: */
 | |
| 			}
 | |
| 		    }
 | |
| /* L360: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of STRSM . */
 | |
| 
 | |
| } /* strsm_ */
 | 
