729 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			729 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dstemr.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b18 = .001;
 | |
| 
 | |
| /* Subroutine */ int dstemr_(char *jobz, char *range, integer *n, doublereal *
 | |
| 	d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il, 
 | |
| 	integer *iu, integer *m, doublereal *w, doublereal *z__, integer *ldz, 
 | |
| 	 integer *nzc, integer *isuppz, logical *tryrac, doublereal *work, 
 | |
| 	integer *lwork, integer *iwork, integer *liwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer z_dim1, z_offset, i__1, i__2;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     double sqrt(doublereal);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j;
 | |
|     doublereal r1, r2;
 | |
|     integer jj;
 | |
|     doublereal cs;
 | |
|     integer in;
 | |
|     doublereal sn, wl, wu;
 | |
|     integer iil, iiu;
 | |
|     doublereal eps, tmp;
 | |
|     integer indd, iend, jblk, wend;
 | |
|     doublereal rmin, rmax;
 | |
|     integer itmp;
 | |
|     doublereal tnrm;
 | |
|     extern /* Subroutine */ int dlae2_(doublereal *, doublereal *, doublereal 
 | |
| 	    *, doublereal *, doublereal *);
 | |
|     integer inde2, itmp2;
 | |
|     doublereal rtol1, rtol2;
 | |
|     extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal scale;
 | |
|     integer indgp;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo, iindw, ilast;
 | |
|     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *), dswap_(integer *, doublereal *, integer 
 | |
| 	    *, doublereal *, integer *);
 | |
|     integer lwmin;
 | |
|     logical wantz;
 | |
|     extern /* Subroutine */ int dlaev2_(doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *);
 | |
|     extern doublereal dlamch_(char *);
 | |
|     logical alleig;
 | |
|     integer ibegin;
 | |
|     logical indeig;
 | |
|     integer iindbl;
 | |
|     logical valeig;
 | |
|     extern /* Subroutine */ int dlarrc_(char *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *, 
 | |
| 	     integer *, integer *, integer *), dlarre_(char *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *);
 | |
|     integer wbegin;
 | |
|     doublereal safmin;
 | |
|     extern /* Subroutine */ int dlarrj_(integer *, doublereal *, doublereal *, 
 | |
| 	     integer *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, doublereal *, 
 | |
| 	     integer *), xerbla_(char *, integer *);
 | |
|     doublereal bignum;
 | |
|     integer inderr, iindwk, indgrs, offset;
 | |
|     extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ int dlarrr_(integer *, doublereal *, doublereal *, 
 | |
| 	     integer *), dlarrv_(integer *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    integer *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, integer *, doublereal *, 
 | |
| 	    integer *, integer *), dlasrt_(char *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal thresh;
 | |
|     integer iinspl, ifirst, indwrk, liwmin, nzcmin;
 | |
|     doublereal pivmin;
 | |
|     integer nsplit;
 | |
|     doublereal smlnum;
 | |
|     logical lquery, zquery;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  DSTEMR computes selected eigenvalues and, optionally, eigenvectors */
 | |
| /*  of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
 | |
| /*  a well defined set of pairwise different real eigenvalues, the corresponding */
 | |
| /*  real eigenvectors are pairwise orthogonal. */
 | |
| 
 | |
| /*  The spectrum may be computed either completely or partially by specifying */
 | |
| /*  either an interval (VL,VU] or a range of indices IL:IU for the desired */
 | |
| /*  eigenvalues. */
 | |
| 
 | |
| /*  Depending on the number of desired eigenvalues, these are computed either */
 | |
| /*  by bisection or the dqds algorithm. Numerically orthogonal eigenvectors are */
 | |
| /*  computed by the use of various suitable L D L^T factorizations near clusters */
 | |
| /*  of close eigenvalues (referred to as RRRs, Relatively Robust */
 | |
| /*  Representations). An informal sketch of the algorithm follows. */
 | |
| 
 | |
| /*  For each unreduced block (submatrix) of T, */
 | |
| /*     (a) Compute T - sigma I  = L D L^T, so that L and D */
 | |
| /*         define all the wanted eigenvalues to high relative accuracy. */
 | |
| /*         This means that small relative changes in the entries of D and L */
 | |
| /*         cause only small relative changes in the eigenvalues and */
 | |
| /*         eigenvectors. The standard (unfactored) representation of the */
 | |
| /*         tridiagonal matrix T does not have this property in general. */
 | |
| /*     (b) Compute the eigenvalues to suitable accuracy. */
 | |
| /*         If the eigenvectors are desired, the algorithm attains full */
 | |
| /*         accuracy of the computed eigenvalues only right before */
 | |
| /*         the corresponding vectors have to be computed, see steps c) and d). */
 | |
| /*     (c) For each cluster of close eigenvalues, select a new */
 | |
| /*         shift close to the cluster, find a new factorization, and refine */
 | |
| /*         the shifted eigenvalues to suitable accuracy. */
 | |
| /*     (d) For each eigenvalue with a large enough relative separation compute */
 | |
| /*         the corresponding eigenvector by forming a rank revealing twisted */
 | |
| /*         factorization. Go back to (c) for any clusters that remain. */
 | |
| 
 | |
| /*  For more details, see: */
 | |
| /*  - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
 | |
| /*    to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
 | |
| /*    Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
 | |
| /*  - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
 | |
| /*    Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
 | |
| /*    2004.  Also LAPACK Working Note 154. */
 | |
| /*  - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
 | |
| /*    tridiagonal eigenvalue/eigenvector problem", */
 | |
| /*    Computer Science Division Technical Report No. UCB/CSD-97-971, */
 | |
| /*    UC Berkeley, May 1997. */
 | |
| 
 | |
| /*  Notes: */
 | |
| /*  1.DSTEMR works only on machines which follow IEEE-754 */
 | |
| /*  floating-point standard in their handling of infinities and NaNs. */
 | |
| /*  This permits the use of efficient inner loops avoiding a check for */
 | |
| /*  zero divisors. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| /*  JOBZ    (input) CHARACTER*1 */
 | |
| /*          = 'N':  Compute eigenvalues only; */
 | |
| /*          = 'V':  Compute eigenvalues and eigenvectors. */
 | |
| 
 | |
| /*  RANGE   (input) CHARACTER*1 */
 | |
| /*          = 'A': all eigenvalues will be found. */
 | |
| /*          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | |
| /*                 will be found. */
 | |
| /*          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | |
| 
 | |
| /*  N       (input) INTEGER */
 | |
| /*          The order of the matrix.  N >= 0. */
 | |
| 
 | |
| /*  D       (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the N diagonal elements of the tridiagonal matrix */
 | |
| /*          T. On exit, D is overwritten. */
 | |
| 
 | |
| /*  E       (input/output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          On entry, the (N-1) subdiagonal elements of the tridiagonal */
 | |
| /*          matrix T in elements 1 to N-1 of E. E(N) need not be set on */
 | |
| /*          input, but is used internally as workspace. */
 | |
| /*          On exit, E is overwritten. */
 | |
| 
 | |
| /*  VL      (input) DOUBLE PRECISION */
 | |
| /*  VU      (input) DOUBLE PRECISION */
 | |
| /*          If RANGE='V', the lower and upper bounds of the interval to */
 | |
| /*          be searched for eigenvalues. VL < VU. */
 | |
| /*          Not referenced if RANGE = 'A' or 'I'. */
 | |
| 
 | |
| /*  IL      (input) INTEGER */
 | |
| /*  IU      (input) INTEGER */
 | |
| /*          If RANGE='I', the indices (in ascending order) of the */
 | |
| /*          smallest and largest eigenvalues to be returned. */
 | |
| /*          1 <= IL <= IU <= N, if N > 0. */
 | |
| /*          Not referenced if RANGE = 'A' or 'V'. */
 | |
| 
 | |
| /*  M       (output) INTEGER */
 | |
| /*          The total number of eigenvalues found.  0 <= M <= N. */
 | |
| /*          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | |
| 
 | |
| /*  W       (output) DOUBLE PRECISION array, dimension (N) */
 | |
| /*          The first M elements contain the selected eigenvalues in */
 | |
| /*          ascending order. */
 | |
| 
 | |
| /*  Z       (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
 | |
| /*          If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
 | |
| /*          contain the orthonormal eigenvectors of the matrix T */
 | |
| /*          corresponding to the selected eigenvalues, with the i-th */
 | |
| /*          column of Z holding the eigenvector associated with W(i). */
 | |
| /*          If JOBZ = 'N', then Z is not referenced. */
 | |
| /*          Note: the user must ensure that at least max(1,M) columns are */
 | |
| /*          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | |
| /*          is not known in advance and can be computed with a workspace */
 | |
| /*          query by setting NZC = -1, see below. */
 | |
| 
 | |
| /*  LDZ     (input) INTEGER */
 | |
| /*          The leading dimension of the array Z.  LDZ >= 1, and if */
 | |
| /*          JOBZ = 'V', then LDZ >= max(1,N). */
 | |
| 
 | |
| /*  NZC     (input) INTEGER */
 | |
| /*          The number of eigenvectors to be held in the array Z. */
 | |
| /*          If RANGE = 'A', then NZC >= max(1,N). */
 | |
| /*          If RANGE = 'V', then NZC >= the number of eigenvalues in (VL,VU]. */
 | |
| /*          If RANGE = 'I', then NZC >= IU-IL+1. */
 | |
| /*          If NZC = -1, then a workspace query is assumed; the */
 | |
| /*          routine calculates the number of columns of the array Z that */
 | |
| /*          are needed to hold the eigenvectors. */
 | |
| /*          This value is returned as the first entry of the Z array, and */
 | |
| /*          no error message related to NZC is issued by XERBLA. */
 | |
| 
 | |
| /*  ISUPPZ  (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */
 | |
| /*          The support of the eigenvectors in Z, i.e., the indices */
 | |
| /*          indicating the nonzero elements in Z. The i-th computed eigenvector */
 | |
| /*          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
 | |
| /*          ISUPPZ( 2*i ). This is relevant in the case when the matrix */
 | |
| /*          is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
 | |
| 
 | |
| /*  TRYRAC  (input/output) LOGICAL */
 | |
| /*          If TRYRAC.EQ..TRUE., indicates that the code should check whether */
 | |
| /*          the tridiagonal matrix defines its eigenvalues to high relative */
 | |
| /*          accuracy.  If so, the code uses relative-accuracy preserving */
 | |
| /*          algorithms that might be (a bit) slower depending on the matrix. */
 | |
| /*          If the matrix does not define its eigenvalues to high relative */
 | |
| /*          accuracy, the code can uses possibly faster algorithms. */
 | |
| /*          If TRYRAC.EQ..FALSE., the code is not required to guarantee */
 | |
| /*          relatively accurate eigenvalues and can use the fastest possible */
 | |
| /*          techniques. */
 | |
| /*          On exit, a .TRUE. TRYRAC will be set to .FALSE. if the matrix */
 | |
| /*          does not define its eigenvalues to high relative accuracy. */
 | |
| 
 | |
| /*  WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
 | |
| /*          On exit, if INFO = 0, WORK(1) returns the optimal */
 | |
| /*          (and minimal) LWORK. */
 | |
| 
 | |
| /*  LWORK   (input) INTEGER */
 | |
| /*          The dimension of the array WORK. LWORK >= max(1,18*N) */
 | |
| /*          if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */
 | |
| /*          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /*          only calculates the optimal size of the WORK array, returns */
 | |
| /*          this value as the first entry of the WORK array, and no error */
 | |
| /*          message related to LWORK is issued by XERBLA. */
 | |
| 
 | |
| /*  IWORK   (workspace/output) INTEGER array, dimension (LIWORK) */
 | |
| /*          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
 | |
| 
 | |
| /*  LIWORK  (input) INTEGER */
 | |
| /*          The dimension of the array IWORK.  LIWORK >= max(1,10*N) */
 | |
| /*          if the eigenvectors are desired, and LIWORK >= max(1,8*N) */
 | |
| /*          if only the eigenvalues are to be computed. */
 | |
| /*          If LIWORK = -1, then a workspace query is assumed; the */
 | |
| /*          routine only calculates the optimal size of the IWORK array, */
 | |
| /*          returns this value as the first entry of the IWORK array, and */
 | |
| /*          no error message related to LIWORK is issued by XERBLA. */
 | |
| 
 | |
| /*  INFO    (output) INTEGER */
 | |
| /*          On exit, INFO */
 | |
| /*          = 0:  successful exit */
 | |
| /*          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /*          > 0:  if INFO = 1X, internal error in DLARRE, */
 | |
| /*                if INFO = 2X, internal error in DLARRV. */
 | |
| /*                Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
 | |
| /*                the nonzero error code returned by DLARRE or */
 | |
| /*                DLARRV, respectively. */
 | |
| 
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Beresford Parlett, University of California, Berkeley, USA */
 | |
| /*     Jim Demmel, University of California, Berkeley, USA */
 | |
| /*     Inderjit Dhillon, University of Texas, Austin, USA */
 | |
| /*     Osni Marques, LBNL/NERSC, USA */
 | |
| /*     Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. */
 | |
| /*     .. External Functions .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Intrinsic Functions .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --e;
 | |
|     --w;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1;
 | |
|     z__ -= z_offset;
 | |
|     --isuppz;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantz = lsame_(jobz, "V");
 | |
|     alleig = lsame_(range, "A");
 | |
|     valeig = lsame_(range, "V");
 | |
|     indeig = lsame_(range, "I");
 | |
| 
 | |
|     lquery = *lwork == -1 || *liwork == -1;
 | |
|     zquery = *nzc == -1;
 | |
| /*     DSTEMR needs WORK of size 6*N, IWORK of size 3*N. */
 | |
| /*     In addition, DLARRE needs WORK of size 6*N, IWORK of size 5*N. */
 | |
| /*     Furthermore, DLARRV needs WORK of size 12*N, IWORK of size 7*N. */
 | |
|     if (wantz) {
 | |
| 	lwmin = *n * 18;
 | |
| 	liwmin = *n * 10;
 | |
|     } else {
 | |
| /*        need less workspace if only the eigenvalues are wanted */
 | |
| 	lwmin = *n * 12;
 | |
| 	liwmin = *n << 3;
 | |
|     }
 | |
|     wl = 0.;
 | |
|     wu = 0.;
 | |
|     iil = 0;
 | |
|     iiu = 0;
 | |
|     if (valeig) {
 | |
| /*        We do not reference VL, VU in the cases RANGE = 'I','A' */
 | |
| /*        The interval (WL, WU] contains all the wanted eigenvalues. */
 | |
| /*        It is either given by the user or computed in DLARRE. */
 | |
| 	wl = *vl;
 | |
| 	wu = *vu;
 | |
|     } else if (indeig) {
 | |
| /*        We do not reference IL, IU in the cases RANGE = 'V','A' */
 | |
| 	iil = *il;
 | |
| 	iiu = *iu;
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! (wantz || lsame_(jobz, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (alleig || valeig || indeig)) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (valeig && *n > 0 && wu <= wl) {
 | |
| 	*info = -7;
 | |
|     } else if (indeig && (iil < 1 || iil > *n)) {
 | |
| 	*info = -8;
 | |
|     } else if (indeig && (iiu < iil || iiu > *n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldz < 1 || wantz && *ldz < *n) {
 | |
| 	*info = -13;
 | |
|     } else if (*lwork < lwmin && ! lquery) {
 | |
| 	*info = -17;
 | |
|     } else if (*liwork < liwmin && ! lquery) {
 | |
| 	*info = -19;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants. */
 | |
| 
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     eps = dlamch_("Precision");
 | |
|     smlnum = safmin / eps;
 | |
|     bignum = 1. / smlnum;
 | |
|     rmin = sqrt(smlnum);
 | |
| /* Computing MIN */
 | |
|     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
 | |
|     rmax = min(d__1,d__2);
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	work[1] = (doublereal) lwmin;
 | |
| 	iwork[1] = liwmin;
 | |
| 
 | |
| 	if (wantz && alleig) {
 | |
| 	    nzcmin = *n;
 | |
| 	} else if (wantz && valeig) {
 | |
| 	    dlarrc_("T", n, vl, vu, &d__[1], &e[1], &safmin, &nzcmin, &itmp, &
 | |
| 		    itmp2, info);
 | |
| 	} else if (wantz && indeig) {
 | |
| 	    nzcmin = iiu - iil + 1;
 | |
| 	} else {
 | |
| /*           WANTZ .EQ. FALSE. */
 | |
| 	    nzcmin = 0;
 | |
| 	}
 | |
| 	if (zquery && *info == 0) {
 | |
| 	    z__[z_dim1 + 1] = (doublereal) nzcmin;
 | |
| 	} else if (*nzc < nzcmin && ! zquery) {
 | |
| 	    *info = -14;
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DSTEMR", &i__1);
 | |
| 
 | |
| 	return 0;
 | |
|     } else if (lquery || zquery) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Handle N = 0, 1, and 2 cases immediately */
 | |
| 
 | |
|     *m = 0;
 | |
|     if (*n == 0) {
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	if (alleig || indeig) {
 | |
| 	    *m = 1;
 | |
| 	    w[1] = d__[1];
 | |
| 	} else {
 | |
| 	    if (wl < d__[1] && wu >= d__[1]) {
 | |
| 		*m = 1;
 | |
| 		w[1] = d__[1];
 | |
| 	    }
 | |
| 	}
 | |
| 	if (wantz && ! zquery) {
 | |
| 	    z__[z_dim1 + 1] = 1.;
 | |
| 	    isuppz[1] = 1;
 | |
| 	    isuppz[2] = 1;
 | |
| 	}
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
|     if (*n == 2) {
 | |
| 	if (! wantz) {
 | |
| 	    dlae2_(&d__[1], &e[1], &d__[2], &r1, &r2);
 | |
| 	} else if (wantz && ! zquery) {
 | |
| 	    dlaev2_(&d__[1], &e[1], &d__[2], &r1, &r2, &cs, &sn);
 | |
| 	}
 | |
| 	if (alleig || valeig && r2 > wl && r2 <= wu || indeig && iil == 1) {
 | |
| 	    ++(*m);
 | |
| 	    w[*m] = r2;
 | |
| 	    if (wantz && ! zquery) {
 | |
| 		z__[*m * z_dim1 + 1] = -sn;
 | |
| 		z__[*m * z_dim1 + 2] = cs;
 | |
| /*              Note: At most one of SN and CS can be zero. */
 | |
| 		if (sn != 0.) {
 | |
| 		    if (cs != 0.) {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[(*m << 1) - 1] = 2;
 | |
| 		    } else {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    isuppz[(*m << 1) - 1] = 2;
 | |
| 		    isuppz[*m * 2] = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	if (alleig || valeig && r1 > wl && r1 <= wu || indeig && iiu == 2) {
 | |
| 	    ++(*m);
 | |
| 	    w[*m] = r1;
 | |
| 	    if (wantz && ! zquery) {
 | |
| 		z__[*m * z_dim1 + 1] = cs;
 | |
| 		z__[*m * z_dim1 + 2] = sn;
 | |
| /*              Note: At most one of SN and CS can be zero. */
 | |
| 		if (sn != 0.) {
 | |
| 		    if (cs != 0.) {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[(*m << 1) - 1] = 2;
 | |
| 		    } else {
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 			isuppz[(*m << 1) - 1] = 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    isuppz[(*m << 1) - 1] = 2;
 | |
| 		    isuppz[*m * 2] = 2;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	return 0;
 | |
|     }
 | |
| /*     Continue with general N */
 | |
|     indgrs = 1;
 | |
|     inderr = (*n << 1) + 1;
 | |
|     indgp = *n * 3 + 1;
 | |
|     indd = (*n << 2) + 1;
 | |
|     inde2 = *n * 5 + 1;
 | |
|     indwrk = *n * 6 + 1;
 | |
| 
 | |
|     iinspl = 1;
 | |
|     iindbl = *n + 1;
 | |
|     iindw = (*n << 1) + 1;
 | |
|     iindwk = *n * 3 + 1;
 | |
| 
 | |
| /*     Scale matrix to allowable range, if necessary. */
 | |
| /*     The allowable range is related to the PIVMIN parameter; see the */
 | |
| /*     comments in DLARRD.  The preference for scaling small values */
 | |
| /*     up is heuristic; we expect users' matrices not to be close to the */
 | |
| /*     RMAX threshold. */
 | |
| 
 | |
|     scale = 1.;
 | |
|     tnrm = dlanst_("M", n, &d__[1], &e[1]);
 | |
|     if (tnrm > 0. && tnrm < rmin) {
 | |
| 	scale = rmin / tnrm;
 | |
|     } else if (tnrm > rmax) {
 | |
| 	scale = rmax / tnrm;
 | |
|     }
 | |
|     if (scale != 1.) {
 | |
| 	dscal_(n, &scale, &d__[1], &c__1);
 | |
| 	i__1 = *n - 1;
 | |
| 	dscal_(&i__1, &scale, &e[1], &c__1);
 | |
| 	tnrm *= scale;
 | |
| 	if (valeig) {
 | |
| /*           If eigenvalues in interval have to be found, */
 | |
| /*           scale (WL, WU] accordingly */
 | |
| 	    wl *= scale;
 | |
| 	    wu *= scale;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the desired eigenvalues of the tridiagonal after splitting */
 | |
| /*     into smaller subblocks if the corresponding off-diagonal elements */
 | |
| /*     are small */
 | |
| /*     THRESH is the splitting parameter for DLARRE */
 | |
| /*     A negative THRESH forces the old splitting criterion based on the */
 | |
| /*     size of the off-diagonal. A positive THRESH switches to splitting */
 | |
| /*     which preserves relative accuracy. */
 | |
| 
 | |
|     if (*tryrac) {
 | |
| /*        Test whether the matrix warrants the more expensive relative approach. */
 | |
| 	dlarrr_(n, &d__[1], &e[1], &iinfo);
 | |
|     } else {
 | |
| /*        The user does not care about relative accurately eigenvalues */
 | |
| 	iinfo = -1;
 | |
|     }
 | |
| /*     Set the splitting criterion */
 | |
|     if (iinfo == 0) {
 | |
| 	thresh = eps;
 | |
|     } else {
 | |
| 	thresh = -eps;
 | |
| /*        relative accuracy is desired but T does not guarantee it */
 | |
| 	*tryrac = FALSE_;
 | |
|     }
 | |
| 
 | |
|     if (*tryrac) {
 | |
| /*        Copy original diagonal, needed to guarantee relative accuracy */
 | |
| 	dcopy_(n, &d__[1], &c__1, &work[indd], &c__1);
 | |
|     }
 | |
| /*     Store the squares of the offdiagonal values of T */
 | |
|     i__1 = *n - 1;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing 2nd power */
 | |
| 	d__1 = e[j];
 | |
| 	work[inde2 + j - 1] = d__1 * d__1;
 | |
| /* L5: */
 | |
|     }
 | |
| /*     Set the tolerance parameters for bisection */
 | |
|     if (! wantz) {
 | |
| /*        DLARRE computes the eigenvalues to full precision. */
 | |
| 	rtol1 = eps * 4.;
 | |
| 	rtol2 = eps * 4.;
 | |
|     } else {
 | |
| /*        DLARRE computes the eigenvalues to less than full precision. */
 | |
| /*        DLARRV will refine the eigenvalue approximations, and we can */
 | |
| /*        need less accurate initial bisection in DLARRE. */
 | |
| /*        Note: these settings do only affect the subset case and DLARRE */
 | |
| 	rtol1 = sqrt(eps);
 | |
| /* Computing MAX */
 | |
| 	d__1 = sqrt(eps) * .005, d__2 = eps * 4.;
 | |
| 	rtol2 = max(d__1,d__2);
 | |
|     }
 | |
|     dlarre_(range, n, &wl, &wu, &iil, &iiu, &d__[1], &e[1], &work[inde2], &
 | |
| 	    rtol1, &rtol2, &thresh, &nsplit, &iwork[iinspl], m, &w[1], &work[
 | |
| 	    inderr], &work[indgp], &iwork[iindbl], &iwork[iindw], &work[
 | |
| 	    indgrs], &pivmin, &work[indwrk], &iwork[iindwk], &iinfo);
 | |
|     if (iinfo != 0) {
 | |
| 	*info = abs(iinfo) + 10;
 | |
| 	return 0;
 | |
|     }
 | |
| /*     Note that if RANGE .NE. 'V', DLARRE computes bounds on the desired */
 | |
| /*     part of the spectrum. All desired eigenvalues are contained in */
 | |
| /*     (WL,WU] */
 | |
|     if (wantz) {
 | |
| 
 | |
| /*        Compute the desired eigenvectors corresponding to the computed */
 | |
| /*        eigenvalues */
 | |
| 
 | |
| 	dlarrv_(n, &wl, &wu, &d__[1], &e[1], &pivmin, &iwork[iinspl], m, &
 | |
| 		c__1, m, &c_b18, &rtol1, &rtol2, &w[1], &work[inderr], &work[
 | |
| 		indgp], &iwork[iindbl], &iwork[iindw], &work[indgrs], &z__[
 | |
| 		z_offset], ldz, &isuppz[1], &work[indwrk], &iwork[iindwk], &
 | |
| 		iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = abs(iinfo) + 20;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     } else {
 | |
| /*        DLARRE computes eigenvalues of the (shifted) root representation */
 | |
| /*        DLARRV returns the eigenvalues of the unshifted matrix. */
 | |
| /*        However, if the eigenvectors are not desired by the user, we need */
 | |
| /*        to apply the corresponding shifts from DLARRE to obtain the */
 | |
| /*        eigenvalues of the original matrix. */
 | |
| 	i__1 = *m;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    itmp = iwork[iindbl + j - 1];
 | |
| 	    w[j] += e[iwork[iinspl + itmp - 1]];
 | |
| /* L20: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*tryrac) {
 | |
| /*        Refine computed eigenvalues so that they are relatively accurate */
 | |
| /*        with respect to the original matrix T. */
 | |
| 	ibegin = 1;
 | |
| 	wbegin = 1;
 | |
| 	i__1 = iwork[iindbl + *m - 1];
 | |
| 	for (jblk = 1; jblk <= i__1; ++jblk) {
 | |
| 	    iend = iwork[iinspl + jblk - 1];
 | |
| 	    in = iend - ibegin + 1;
 | |
| 	    wend = wbegin - 1;
 | |
| /*           check if any eigenvalues have to be refined in this block */
 | |
| L36:
 | |
| 	    if (wend < *m) {
 | |
| 		if (iwork[iindbl + wend] == jblk) {
 | |
| 		    ++wend;
 | |
| 		    goto L36;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (wend < wbegin) {
 | |
| 		ibegin = iend + 1;
 | |
| 		goto L39;
 | |
| 	    }
 | |
| 	    offset = iwork[iindw + wbegin - 1] - 1;
 | |
| 	    ifirst = iwork[iindw + wbegin - 1];
 | |
| 	    ilast = iwork[iindw + wend - 1];
 | |
| 	    rtol2 = eps * 4.;
 | |
| 	    dlarrj_(&in, &work[indd + ibegin - 1], &work[inde2 + ibegin - 1], 
 | |
| 		    &ifirst, &ilast, &rtol2, &offset, &w[wbegin], &work[
 | |
| 		    inderr + wbegin - 1], &work[indwrk], &iwork[iindwk], &
 | |
| 		    pivmin, &tnrm, &iinfo);
 | |
| 	    ibegin = iend + 1;
 | |
| 	    wbegin = wend + 1;
 | |
| L39:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 | |
| 
 | |
|     if (scale != 1.) {
 | |
| 	d__1 = 1. / scale;
 | |
| 	dscal_(m, &d__1, &w[1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     If eigenvalues are not in increasing order, then sort them, */
 | |
| /*     possibly along with eigenvectors. */
 | |
| 
 | |
|     if (nsplit > 1) {
 | |
| 	if (! wantz) {
 | |
| 	    dlasrt_("I", m, &w[1], &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = 3;
 | |
| 		return 0;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *m - 1;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__ = 0;
 | |
| 		tmp = w[j];
 | |
| 		i__2 = *m;
 | |
| 		for (jj = j + 1; jj <= i__2; ++jj) {
 | |
| 		    if (w[jj] < tmp) {
 | |
| 			i__ = jj;
 | |
| 			tmp = w[jj];
 | |
| 		    }
 | |
| /* L50: */
 | |
| 		}
 | |
| 		if (i__ != 0) {
 | |
| 		    w[i__] = w[j];
 | |
| 		    w[j] = tmp;
 | |
| 		    if (wantz) {
 | |
| 			dswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * 
 | |
| 				z_dim1 + 1], &c__1);
 | |
| 			itmp = isuppz[(i__ << 1) - 1];
 | |
| 			isuppz[(i__ << 1) - 1] = isuppz[(j << 1) - 1];
 | |
| 			isuppz[(j << 1) - 1] = itmp;
 | |
| 			itmp = isuppz[i__ * 2];
 | |
| 			isuppz[i__ * 2] = isuppz[j * 2];
 | |
| 			isuppz[j * 2] = itmp;
 | |
| 		    }
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|     work[1] = (doublereal) lwmin;
 | |
|     iwork[1] = liwmin;
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DSTEMR */
 | |
| 
 | |
| } /* dstemr_ */
 | 
