457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* dlalsa.f -- translated by f2c (version 20061008).
 | |
|    You must link the resulting object file with libf2c:
 | |
| 	on Microsoft Windows system, link with libf2c.lib;
 | |
| 	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
 | |
| 	or, if you install libf2c.a in a standard place, with -lf2c -lm
 | |
| 	-- in that order, at the end of the command line, as in
 | |
| 		cc *.o -lf2c -lm
 | |
| 	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
 | |
| 
 | |
| 		http://www.netlib.org/f2c/libf2c.zip
 | |
| */
 | |
| 
 | |
| #include "clapack.h"
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b7 = 1.;
 | |
| static doublereal c_b8 = 0.;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* Subroutine */ int dlalsa_(integer *icompq, integer *smlsiz, integer *n, 
 | |
| 	integer *nrhs, doublereal *b, integer *ldb, doublereal *bx, integer *
 | |
| 	ldbx, doublereal *u, integer *ldu, doublereal *vt, integer *k, 
 | |
| 	doublereal *difl, doublereal *difr, doublereal *z__, doublereal *
 | |
| 	poles, integer *givptr, integer *givcol, integer *ldgcol, integer *
 | |
| 	perm, doublereal *givnum, doublereal *c__, doublereal *s, doublereal *
 | |
| 	work, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer givcol_dim1, givcol_offset, perm_dim1, perm_offset, b_dim1, 
 | |
| 	    b_offset, bx_dim1, bx_offset, difl_dim1, difl_offset, difr_dim1, 
 | |
| 	    difr_offset, givnum_dim1, givnum_offset, poles_dim1, poles_offset,
 | |
| 	     u_dim1, u_offset, vt_dim1, vt_offset, z_dim1, z_offset, i__1, 
 | |
| 	    i__2;
 | |
| 
 | |
|     /* Builtin functions */
 | |
|     integer pow_ii(integer *, integer *);
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j, i1, ic, lf, nd, ll, nl, nr, im1, nlf, nrf, lvl, ndb1, 
 | |
| 	    nlp1, lvl2, nrp1, nlvl, sqre;
 | |
|     extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, doublereal *, doublereal *, integer *);
 | |
|     integer inode, ndiml, ndimr;
 | |
|     extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *), dlals0_(integer *, integer *, integer *, 
 | |
| 	     integer *, integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *, integer *, integer *, integer *, integer *, doublereal 
 | |
| 	    *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, integer *, doublereal *, doublereal *, doublereal *, 
 | |
| 	     integer *), dlasdt_(integer *, integer *, integer *, integer *, 
 | |
| 	    integer *, integer *, integer *), xerbla_(char *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK routine (version 3.2) -- */
 | |
| /*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
 | |
| /*     November 2006 */
 | |
| 
 | |
| /*     .. Scalar Arguments .. */
 | |
| /*     .. */
 | |
| /*     .. Array Arguments .. */
 | |
| /*     .. */
 | |
| 
 | |
| /*  Purpose */
 | |
| /*  ======= */
 | |
| 
 | |
| /*  DLALSA is an itermediate step in solving the least squares problem */
 | |
| /*  by computing the SVD of the coefficient matrix in compact form (The */
 | |
| /*  singular vectors are computed as products of simple orthorgonal */
 | |
| /*  matrices.). */
 | |
| 
 | |
| /*  If ICOMPQ = 0, DLALSA applies the inverse of the left singular vector */
 | |
| /*  matrix of an upper bidiagonal matrix to the right hand side; and if */
 | |
| /*  ICOMPQ = 1, DLALSA applies the right singular vector matrix to the */
 | |
| /*  right hand side. The singular vector matrices were generated in */
 | |
| /*  compact form by DLALSA. */
 | |
| 
 | |
| /*  Arguments */
 | |
| /*  ========= */
 | |
| 
 | |
| 
 | |
| /*  ICOMPQ (input) INTEGER */
 | |
| /*         Specifies whether the left or the right singular vector */
 | |
| /*         matrix is involved. */
 | |
| /*         = 0: Left singular vector matrix */
 | |
| /*         = 1: Right singular vector matrix */
 | |
| 
 | |
| /*  SMLSIZ (input) INTEGER */
 | |
| /*         The maximum size of the subproblems at the bottom of the */
 | |
| /*         computation tree. */
 | |
| 
 | |
| /*  N      (input) INTEGER */
 | |
| /*         The row and column dimensions of the upper bidiagonal matrix. */
 | |
| 
 | |
| /*  NRHS   (input) INTEGER */
 | |
| /*         The number of columns of B and BX. NRHS must be at least 1. */
 | |
| 
 | |
| /*  B      (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) */
 | |
| /*         On input, B contains the right hand sides of the least */
 | |
| /*         squares problem in rows 1 through M. */
 | |
| /*         On output, B contains the solution X in rows 1 through N. */
 | |
| 
 | |
| /*  LDB    (input) INTEGER */
 | |
| /*         The leading dimension of B in the calling subprogram. */
 | |
| /*         LDB must be at least max(1,MAX( M, N ) ). */
 | |
| 
 | |
| /*  BX     (output) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) */
 | |
| /*         On exit, the result of applying the left or right singular */
 | |
| /*         vector matrix to B. */
 | |
| 
 | |
| /*  LDBX   (input) INTEGER */
 | |
| /*         The leading dimension of BX. */
 | |
| 
 | |
| /*  U      (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ ). */
 | |
| /*         On entry, U contains the left singular vector matrices of all */
 | |
| /*         subproblems at the bottom level. */
 | |
| 
 | |
| /*  LDU    (input) INTEGER, LDU = > N. */
 | |
| /*         The leading dimension of arrays U, VT, DIFL, DIFR, */
 | |
| /*         POLES, GIVNUM, and Z. */
 | |
| 
 | |
| /*  VT     (input) DOUBLE PRECISION array, dimension ( LDU, SMLSIZ+1 ). */
 | |
| /*         On entry, VT' contains the right singular vector matrices of */
 | |
| /*         all subproblems at the bottom level. */
 | |
| 
 | |
| /*  K      (input) INTEGER array, dimension ( N ). */
 | |
| 
 | |
| /*  DIFL   (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
 | |
| /*         where NLVL = INT(log_2 (N/(SMLSIZ+1))) + 1. */
 | |
| 
 | |
| /*  DIFR   (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
 | |
| /*         On entry, DIFL(*, I) and DIFR(*, 2 * I -1) record */
 | |
| /*         distances between singular values on the I-th level and */
 | |
| /*         singular values on the (I -1)-th level, and DIFR(*, 2 * I) */
 | |
| /*         record the normalizing factors of the right singular vectors */
 | |
| /*         matrices of subproblems on I-th level. */
 | |
| 
 | |
| /*  Z      (input) DOUBLE PRECISION array, dimension ( LDU, NLVL ). */
 | |
| /*         On entry, Z(1, I) contains the components of the deflation- */
 | |
| /*         adjusted updating row vector for subproblems on the I-th */
 | |
| /*         level. */
 | |
| 
 | |
| /*  POLES  (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
 | |
| /*         On entry, POLES(*, 2 * I -1: 2 * I) contains the new and old */
 | |
| /*         singular values involved in the secular equations on the I-th */
 | |
| /*         level. */
 | |
| 
 | |
| /*  GIVPTR (input) INTEGER array, dimension ( N ). */
 | |
| /*         On entry, GIVPTR( I ) records the number of Givens */
 | |
| /*         rotations performed on the I-th problem on the computation */
 | |
| /*         tree. */
 | |
| 
 | |
| /*  GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 * NLVL ). */
 | |
| /*         On entry, for each I, GIVCOL(*, 2 * I - 1: 2 * I) records the */
 | |
| /*         locations of Givens rotations performed on the I-th level on */
 | |
| /*         the computation tree. */
 | |
| 
 | |
| /*  LDGCOL (input) INTEGER, LDGCOL = > N. */
 | |
| /*         The leading dimension of arrays GIVCOL and PERM. */
 | |
| 
 | |
| /*  PERM   (input) INTEGER array, dimension ( LDGCOL, NLVL ). */
 | |
| /*         On entry, PERM(*, I) records permutations done on the I-th */
 | |
| /*         level of the computation tree. */
 | |
| 
 | |
| /*  GIVNUM (input) DOUBLE PRECISION array, dimension ( LDU, 2 * NLVL ). */
 | |
| /*         On entry, GIVNUM(*, 2 *I -1 : 2 * I) records the C- and S- */
 | |
| /*         values of Givens rotations performed on the I-th level on the */
 | |
| /*         computation tree. */
 | |
| 
 | |
| /*  C      (input) DOUBLE PRECISION array, dimension ( N ). */
 | |
| /*         On entry, if the I-th subproblem is not square, */
 | |
| /*         C( I ) contains the C-value of a Givens rotation related to */
 | |
| /*         the right null space of the I-th subproblem. */
 | |
| 
 | |
| /*  S      (input) DOUBLE PRECISION array, dimension ( N ). */
 | |
| /*         On entry, if the I-th subproblem is not square, */
 | |
| /*         S( I ) contains the S-value of a Givens rotation related to */
 | |
| /*         the right null space of the I-th subproblem. */
 | |
| 
 | |
| /*  WORK   (workspace) DOUBLE PRECISION array. */
 | |
| /*         The dimension must be at least N. */
 | |
| 
 | |
| /*  IWORK  (workspace) INTEGER array. */
 | |
| /*         The dimension must be at least 3 * N */
 | |
| 
 | |
| /*  INFO   (output) INTEGER */
 | |
| /*          = 0:  successful exit. */
 | |
| /*          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| 
 | |
| /*  Further Details */
 | |
| /*  =============== */
 | |
| 
 | |
| /*  Based on contributions by */
 | |
| /*     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
 | |
| /*       California at Berkeley, USA */
 | |
| /*     Osni Marques, LBNL/NERSC, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| /*     .. Parameters .. */
 | |
| /*     .. */
 | |
| /*     .. Local Scalars .. */
 | |
| /*     .. */
 | |
| /*     .. External Subroutines .. */
 | |
| /*     .. */
 | |
| /*     .. Executable Statements .. */
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1;
 | |
|     b -= b_offset;
 | |
|     bx_dim1 = *ldbx;
 | |
|     bx_offset = 1 + bx_dim1;
 | |
|     bx -= bx_offset;
 | |
|     givnum_dim1 = *ldu;
 | |
|     givnum_offset = 1 + givnum_dim1;
 | |
|     givnum -= givnum_offset;
 | |
|     poles_dim1 = *ldu;
 | |
|     poles_offset = 1 + poles_dim1;
 | |
|     poles -= poles_offset;
 | |
|     z_dim1 = *ldu;
 | |
|     z_offset = 1 + z_dim1;
 | |
|     z__ -= z_offset;
 | |
|     difr_dim1 = *ldu;
 | |
|     difr_offset = 1 + difr_dim1;
 | |
|     difr -= difr_offset;
 | |
|     difl_dim1 = *ldu;
 | |
|     difl_offset = 1 + difl_dim1;
 | |
|     difl -= difl_offset;
 | |
|     vt_dim1 = *ldu;
 | |
|     vt_offset = 1 + vt_dim1;
 | |
|     vt -= vt_offset;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1;
 | |
|     u -= u_offset;
 | |
|     --k;
 | |
|     --givptr;
 | |
|     perm_dim1 = *ldgcol;
 | |
|     perm_offset = 1 + perm_dim1;
 | |
|     perm -= perm_offset;
 | |
|     givcol_dim1 = *ldgcol;
 | |
|     givcol_offset = 1 + givcol_dim1;
 | |
|     givcol -= givcol_offset;
 | |
|     --c__;
 | |
|     --s;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*icompq < 0 || *icompq > 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*smlsiz < 3) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < *smlsiz) {
 | |
| 	*info = -3;
 | |
|     } else if (*nrhs < 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldb < *n) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldbx < *n) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldu < *n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldgcol < *n) {
 | |
| 	*info = -19;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("DLALSA", &i__1);
 | |
| 	return 0;
 | |
|     }
 | |
| 
 | |
| /*     Book-keeping and  setting up the computation tree. */
 | |
| 
 | |
|     inode = 1;
 | |
|     ndiml = inode + *n;
 | |
|     ndimr = ndiml + *n;
 | |
| 
 | |
|     dlasdt_(n, &nlvl, &nd, &iwork[inode], &iwork[ndiml], &iwork[ndimr], 
 | |
| 	    smlsiz);
 | |
| 
 | |
| /*     The following code applies back the left singular vector factors. */
 | |
| /*     For applying back the right singular vector factors, go to 50. */
 | |
| 
 | |
|     if (*icompq == 1) {
 | |
| 	goto L50;
 | |
|     }
 | |
| 
 | |
| /*     The nodes on the bottom level of the tree were solved */
 | |
| /*     by DLASDQ. The corresponding left and right singular vector */
 | |
| /*     matrices are in explicit form. First apply back the left */
 | |
| /*     singular vector matrices. */
 | |
| 
 | |
|     ndb1 = (nd + 1) / 2;
 | |
|     i__1 = nd;
 | |
|     for (i__ = ndb1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*        IC : center row of each node */
 | |
| /*        NL : number of rows of left  subproblem */
 | |
| /*        NR : number of rows of right subproblem */
 | |
| /*        NLF: starting row of the left   subproblem */
 | |
| /*        NRF: starting row of the right  subproblem */
 | |
| 
 | |
| 	i1 = i__ - 1;
 | |
| 	ic = iwork[inode + i1];
 | |
| 	nl = iwork[ndiml + i1];
 | |
| 	nr = iwork[ndimr + i1];
 | |
| 	nlf = ic - nl;
 | |
| 	nrf = ic + 1;
 | |
| 	dgemm_("T", "N", &nl, nrhs, &nl, &c_b7, &u[nlf + u_dim1], ldu, &b[nlf 
 | |
| 		+ b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
 | |
| 	dgemm_("T", "N", &nr, nrhs, &nr, &c_b7, &u[nrf + u_dim1], ldu, &b[nrf 
 | |
| 		+ b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
| /*     Next copy the rows of B that correspond to unchanged rows */
 | |
| /*     in the bidiagonal matrix to BX. */
 | |
| 
 | |
|     i__1 = nd;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	ic = iwork[inode + i__ - 1];
 | |
| 	dcopy_(nrhs, &b[ic + b_dim1], ldb, &bx[ic + bx_dim1], ldbx);
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Finally go through the left singular vector matrices of all */
 | |
| /*     the other subproblems bottom-up on the tree. */
 | |
| 
 | |
|     j = pow_ii(&c__2, &nlvl);
 | |
|     sqre = 0;
 | |
| 
 | |
|     for (lvl = nlvl; lvl >= 1; --lvl) {
 | |
| 	lvl2 = (lvl << 1) - 1;
 | |
| 
 | |
| /*        find the first node LF and last node LL on */
 | |
| /*        the current level LVL */
 | |
| 
 | |
| 	if (lvl == 1) {
 | |
| 	    lf = 1;
 | |
| 	    ll = 1;
 | |
| 	} else {
 | |
| 	    i__1 = lvl - 1;
 | |
| 	    lf = pow_ii(&c__2, &i__1);
 | |
| 	    ll = (lf << 1) - 1;
 | |
| 	}
 | |
| 	i__1 = ll;
 | |
| 	for (i__ = lf; i__ <= i__1; ++i__) {
 | |
| 	    im1 = i__ - 1;
 | |
| 	    ic = iwork[inode + im1];
 | |
| 	    nl = iwork[ndiml + im1];
 | |
| 	    nr = iwork[ndimr + im1];
 | |
| 	    nlf = ic - nl;
 | |
| 	    nrf = ic + 1;
 | |
| 	    --j;
 | |
| 	    dlals0_(icompq, &nl, &nr, &sqre, nrhs, &bx[nlf + bx_dim1], ldbx, &
 | |
| 		    b[nlf + b_dim1], ldb, &perm[nlf + lvl * perm_dim1], &
 | |
| 		    givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
 | |
| 		    givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
 | |
| 		     poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 
 | |
| 		    lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
 | |
| 		    j], &s[j], &work[1], info);
 | |
| /* L30: */
 | |
| 	}
 | |
| /* L40: */
 | |
|     }
 | |
|     goto L90;
 | |
| 
 | |
| /*     ICOMPQ = 1: applying back the right singular vector factors. */
 | |
| 
 | |
| L50:
 | |
| 
 | |
| /*     First now go through the right singular vector matrices of all */
 | |
| /*     the tree nodes top-down. */
 | |
| 
 | |
|     j = 0;
 | |
|     i__1 = nlvl;
 | |
|     for (lvl = 1; lvl <= i__1; ++lvl) {
 | |
| 	lvl2 = (lvl << 1) - 1;
 | |
| 
 | |
| /*        Find the first node LF and last node LL on */
 | |
| /*        the current level LVL. */
 | |
| 
 | |
| 	if (lvl == 1) {
 | |
| 	    lf = 1;
 | |
| 	    ll = 1;
 | |
| 	} else {
 | |
| 	    i__2 = lvl - 1;
 | |
| 	    lf = pow_ii(&c__2, &i__2);
 | |
| 	    ll = (lf << 1) - 1;
 | |
| 	}
 | |
| 	i__2 = lf;
 | |
| 	for (i__ = ll; i__ >= i__2; --i__) {
 | |
| 	    im1 = i__ - 1;
 | |
| 	    ic = iwork[inode + im1];
 | |
| 	    nl = iwork[ndiml + im1];
 | |
| 	    nr = iwork[ndimr + im1];
 | |
| 	    nlf = ic - nl;
 | |
| 	    nrf = ic + 1;
 | |
| 	    if (i__ == ll) {
 | |
| 		sqre = 0;
 | |
| 	    } else {
 | |
| 		sqre = 1;
 | |
| 	    }
 | |
| 	    ++j;
 | |
| 	    dlals0_(icompq, &nl, &nr, &sqre, nrhs, &b[nlf + b_dim1], ldb, &bx[
 | |
| 		    nlf + bx_dim1], ldbx, &perm[nlf + lvl * perm_dim1], &
 | |
| 		    givptr[j], &givcol[nlf + lvl2 * givcol_dim1], ldgcol, &
 | |
| 		    givnum[nlf + lvl2 * givnum_dim1], ldu, &poles[nlf + lvl2 *
 | |
| 		     poles_dim1], &difl[nlf + lvl * difl_dim1], &difr[nlf + 
 | |
| 		    lvl2 * difr_dim1], &z__[nlf + lvl * z_dim1], &k[j], &c__[
 | |
| 		    j], &s[j], &work[1], info);
 | |
| /* L60: */
 | |
| 	}
 | |
| /* L70: */
 | |
|     }
 | |
| 
 | |
| /*     The nodes on the bottom level of the tree were solved */
 | |
| /*     by DLASDQ. The corresponding right singular vector */
 | |
| /*     matrices are in explicit form. Apply them back. */
 | |
| 
 | |
|     ndb1 = (nd + 1) / 2;
 | |
|     i__1 = nd;
 | |
|     for (i__ = ndb1; i__ <= i__1; ++i__) {
 | |
| 	i1 = i__ - 1;
 | |
| 	ic = iwork[inode + i1];
 | |
| 	nl = iwork[ndiml + i1];
 | |
| 	nr = iwork[ndimr + i1];
 | |
| 	nlp1 = nl + 1;
 | |
| 	if (i__ == nd) {
 | |
| 	    nrp1 = nr;
 | |
| 	} else {
 | |
| 	    nrp1 = nr + 1;
 | |
| 	}
 | |
| 	nlf = ic - nl;
 | |
| 	nrf = ic + 1;
 | |
| 	dgemm_("T", "N", &nlp1, nrhs, &nlp1, &c_b7, &vt[nlf + vt_dim1], ldu, &
 | |
| 		b[nlf + b_dim1], ldb, &c_b8, &bx[nlf + bx_dim1], ldbx);
 | |
| 	dgemm_("T", "N", &nrp1, nrhs, &nrp1, &c_b7, &vt[nrf + vt_dim1], ldu, &
 | |
| 		b[nrf + b_dim1], ldb, &c_b8, &bx[nrf + bx_dim1], ldbx);
 | |
| /* L80: */
 | |
|     }
 | |
| 
 | |
| L90:
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| /*     End of DLALSA */
 | |
| 
 | |
| } /* dlalsa_ */
 | 
