opencv/modules/ocl/src/sort_by_key.cpp
2013-10-03 19:50:14 +04:00

453 lines
16 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include "opencl_kernels.hpp"
using namespace cv;
using namespace cv::ocl;
namespace cv
{
namespace ocl
{
void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, int method, bool isGreaterThan);
//TODO(pengx17): change this value depending on device other than a constant
const static unsigned int GROUP_SIZE = 256;
const char * depth_strings[] =
{
"uchar", //CV_8U
"char", //CV_8S
"ushort", //CV_16U
"short", //CV_16S
"int", //CV_32S
"float", //CV_32F
"double" //CV_64F
};
void static genSortBuildOption(const oclMat& keys, const oclMat& vals, bool isGreaterThan, char * build_opt_buf)
{
sprintf(build_opt_buf, "-D IS_GT=%d -D K_T=%s -D V_T=%s",
isGreaterThan?1:0, depth_strings[keys.depth()], depth_strings[vals.depth()]);
if(vals.oclchannels() > 1)
{
sprintf( build_opt_buf + strlen(build_opt_buf), "%d", vals.oclchannels());
}
}
inline bool isSizePowerOf2(size_t size)
{
return ((size - 1) & (size)) == 0;
}
namespace bitonic_sort
{
static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreaterThan)
{
CV_Assert(isSizePowerOf2(vecSize));
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize / 2, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1};
// 2^numStages should be equal to vecSize or the output is invalid
int numStages = 0;
for(int i = vecSize; i > 1; i >>= 1)
{
++numStages;
}
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
const int argc = 5;
std::vector< std::pair<size_t, const void *> > args(argc);
String kernelname = "bitonicSort";
args[0] = std::make_pair(sizeof(cl_mem), (void *)&keys.data);
args[1] = std::make_pair(sizeof(cl_mem), (void *)&vals.data);
args[2] = std::make_pair(sizeof(cl_int), (void *)&vecSize);
for(int stage = 0; stage < numStages; ++stage)
{
args[3] = std::make_pair(sizeof(cl_int), (void *)&stage);
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
{
args[4] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
openCLExecuteKernel(cxt, &kernel_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1, build_opt_buf);
}
}
}
} /* bitonic_sort */
namespace selection_sort
{
// FIXME:
// This function cannot sort arrays with duplicated keys
static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreaterThan)
{
CV_Error(-1, "This function is incorrect at the moment.");
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1};
std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
//local
String kernelname = "selectionSortLocal";
int lds_size = GROUP_SIZE * keys.elemSize();
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&vals.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&vecSize));
args.push_back(std::make_pair(lds_size, (void*)NULL));
openCLExecuteKernel(cxt, &kernel_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1, build_opt_buf);
//final
kernelname = "selectionSortFinal";
args.pop_back();
openCLExecuteKernel(cxt, &kernel_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1, build_opt_buf);
}
} /* selection_sort */
namespace radix_sort
{
//FIXME(pengx17):
// exclusive scan, need to be optimized as this is too naive...
//void naive_scan_addition(oclMat& input, oclMat& output)
//{
// Context * cxt = Context::getContext();
// size_t vecSize = input.cols;
// size_t globalThreads[3] = {1, 1, 1};
// size_t localThreads[3] = {1, 1, 1};
//
// String kernelname = "naiveScanAddition";
//
// std::vector< std::pair<size_t, const void *> > args;
// args.push_back(std::make_pair(sizeof(cl_mem), (void *)&input.data));
// args.push_back(std::make_pair(sizeof(cl_mem), (void *)&output.data));
// args.push_back(std::make_pair(sizeof(cl_int), (void *)&vecSize));
// openCLExecuteKernel(cxt, &kernel_radix_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1);
//}
void static naive_scan_addition_cpu(oclMat& input, oclMat& output)
{
Mat m_input = input, m_output(output.size(), output.type());
MatIterator_<int> i_mit = m_input.begin<int>();
MatIterator_<int> o_mit = m_output.begin<int>();
*o_mit = 0;
++i_mit;
++o_mit;
for(; i_mit != m_input.end<int>(); ++i_mit, ++o_mit)
{
*o_mit = *(o_mit - 1) + *(i_mit - 1);
}
output = m_output;
}
//radix sort ported from Bolt
static void sortByKey(oclMat& keys, oclMat& vals, size_t origVecSize, bool isGreaterThan)
{
CV_Assert(keys.depth() == CV_32S || keys.depth() == CV_32F); // we assume keys are 4 bytes
bool isKeyFloat = keys.type() == CV_32F;
const int RADIX = 4; //Now you cannot replace this with Radix 8 since there is a
//local array of 16 elements in the histogram kernel.
const int RADICES = (1 << RADIX); //Values handeled by each work-item?
bool newBuffer = false;
size_t vecSize = origVecSize;
unsigned int groupSize = RADICES;
size_t mulFactor = groupSize * RADICES;
oclMat buffer_keys, buffer_vals;
if(origVecSize % mulFactor != 0)
{
vecSize = ((vecSize + mulFactor) / mulFactor) * mulFactor;
buffer_keys.create(1, vecSize, keys.type());
buffer_vals.create(1, vecSize, vals.type());
Scalar padding_value;
oclMat roi_buffer_vals = buffer_vals(Rect(0,0,origVecSize,1));
if(isGreaterThan)
{
switch(buffer_keys.depth())
{
case CV_32F:
padding_value = Scalar::all(-FLT_MAX);
break;
case CV_32S:
padding_value = Scalar::all(INT_MIN);
break;
}
}
else
{
switch(buffer_keys.depth())
{
case CV_32F:
padding_value = Scalar::all(FLT_MAX);
break;
case CV_32S:
padding_value = Scalar::all(INT_MAX);
break;
}
}
ocl::copyMakeBorder(
keys(Rect(0,0,origVecSize,1)), buffer_keys,
0, 0, 0, vecSize - origVecSize,
BORDER_CONSTANT, padding_value);
vals(Rect(0,0,origVecSize,1)).copyTo(roi_buffer_vals);
newBuffer = true;
}
else
{
buffer_keys = keys;
buffer_vals = vals;
newBuffer = false;
}
oclMat swap_input_keys(1, vecSize, keys.type());
oclMat swap_input_vals(1, vecSize, vals.type());
oclMat hist_bin_keys(1, vecSize, CV_32SC1);
oclMat hist_bin_dest_keys(1, vecSize, CV_32SC1);
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize / RADICES, 1, 1};
size_t localThreads[3] = {groupSize, 1, 1};
std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
//additional build option for radix sort
sprintf(build_opt_buf + strlen(build_opt_buf), " -D K_%s", isKeyFloat?"FLT":"INT");
String kernelnames[2] = {String("histogramRadixN"), String("permuteRadixN")};
int swap = 0;
for(int bits = 0; bits < (static_cast<int>(keys.elemSize()) * 8); bits += RADIX)
{
args.clear();
//Do a histogram pass locally
if(swap == 0)
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_keys.data));
}
else
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_keys.data));
}
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&hist_bin_keys.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&bits));
openCLExecuteKernel(cxt, &kernel_radix_sort_by_key, kernelnames[0], globalThreads, localThreads,
args, -1, -1, build_opt_buf);
args.clear();
//Perform a global scan
naive_scan_addition_cpu(hist_bin_keys, hist_bin_dest_keys);
// end of scan
if(swap == 0)
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_vals.data));
}
else
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_vals.data));
}
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&hist_bin_dest_keys.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&bits));
if(swap == 0)
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_vals.data));
}
else
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_vals.data));
}
openCLExecuteKernel(cxt, &kernel_radix_sort_by_key, kernelnames[1], globalThreads, localThreads,
args, -1, -1, build_opt_buf);
swap = swap ? 0 : 1;
}
if(newBuffer)
{
buffer_keys(Rect(0,0,origVecSize,1)).copyTo(keys);
buffer_vals(Rect(0,0,origVecSize,1)).copyTo(vals);
}
}
} /* radix_sort */
namespace merge_sort
{
static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreaterThan)
{
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1};
std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
String kernelname[] = {String("blockInsertionSort"), String("merge")};
int keylds_size = GROUP_SIZE * keys.elemSize();
int vallds_size = GROUP_SIZE * vals.elemSize();
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&vals.data));
args.push_back(std::make_pair(sizeof(cl_uint), (void *)&vecSize));
args.push_back(std::make_pair(keylds_size, (void*)NULL));
args.push_back(std::make_pair(vallds_size, (void*)NULL));
openCLExecuteKernel(cxt, &kernel_stablesort_by_key, kernelname[0], globalThreads, localThreads, args, -1, -1, build_opt_buf);
// Early exit for the case of no merge passes, values are already in destination vector
if(vecSize <= GROUP_SIZE)
{
return;
}
// An odd number of elements requires an extra merge pass to sort
size_t numMerges = 0;
// Calculate the log2 of vecSize, taking into acvecSize our block size from kernel 1 is 64
// this is how many merge passes we want
size_t log2BlockSize = vecSize >> 6;
for( ; log2BlockSize > 1; log2BlockSize >>= 1 )
{
++numMerges;
}
// Check to see if the input vector size is a power of 2, if not we will need last merge pass
numMerges += isSizePowerOf2(vecSize)? 1: 0;
// Allocate a flipflop buffer because the merge passes are out of place
oclMat tmpKeyBuffer(keys.size(), keys.type());
oclMat tmpValBuffer(vals.size(), vals.type());
args.resize(8);
args[4] = std::make_pair(sizeof(cl_uint), (void *)&vecSize);
args[6] = std::make_pair(keylds_size, (void*)NULL);
args[7] = std::make_pair(vallds_size, (void*)NULL);
for(size_t pass = 1; pass <= numMerges; ++pass )
{
// For each pass, flip the input-output buffers
if( pass & 0x1 )
{
args[0] = std::make_pair(sizeof(cl_mem), (void *)&keys.data);
args[1] = std::make_pair(sizeof(cl_mem), (void *)&vals.data);
args[2] = std::make_pair(sizeof(cl_mem), (void *)&tmpKeyBuffer.data);
args[3] = std::make_pair(sizeof(cl_mem), (void *)&tmpValBuffer.data);
}
else
{
args[0] = std::make_pair(sizeof(cl_mem), (void *)&tmpKeyBuffer.data);
args[1] = std::make_pair(sizeof(cl_mem), (void *)&tmpValBuffer.data);
args[2] = std::make_pair(sizeof(cl_mem), (void *)&keys.data);
args[3] = std::make_pair(sizeof(cl_mem), (void *)&vals.data);
}
// For each pass, the merge window doubles
unsigned int srcLogicalBlockSize = static_cast<unsigned int>( localThreads[0] << (pass-1) );
args[5] = std::make_pair(sizeof(cl_uint), (void *)&srcLogicalBlockSize);
openCLExecuteKernel(cxt, &kernel_stablesort_by_key, kernelname[1], globalThreads, localThreads, args, -1, -1, build_opt_buf);
}
// If there are an odd number of merges, then the output data is sitting in the temp buffer. We need to copy
// the results back into the input array
if( numMerges & 1 )
{
tmpKeyBuffer.copyTo(keys);
tmpValBuffer.copyTo(vals);
}
}
} /* merge_sort */
}
} /* namespace cv { namespace ocl */
void cv::ocl::sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, int method, bool isGreaterThan)
{
CV_Assert( keys.rows == 1 ); // we only allow one dimensional input
CV_Assert( keys.channels() == 1 ); // we only allow one channel keys
CV_Assert( vecSize <= static_cast<size_t>(keys.cols) );
switch(method)
{
case SORT_BITONIC:
bitonic_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
case SORT_SELECTION:
selection_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
case SORT_RADIX:
radix_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
case SORT_MERGE:
merge_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
}
}
void cv::ocl::sortByKey(oclMat& keys, oclMat& vals, int method, bool isGreaterThan)
{
CV_Assert( keys.size() == vals.size() );
CV_Assert( keys.rows == 1 ); // we only allow one dimensional input
size_t vecSize = static_cast<size_t>(keys.cols);
sortByKey(keys, vals, vecSize, method, isGreaterThan);
}