opencv/modules/features2d/src/stardetector.cpp
Andrey Kamaev 2a6fb2867e Remove all using directives for STL namespace and members
Made all STL usages explicit to be able automatically find all usages of
particular class or function.
2013-02-25 15:04:17 +04:00

450 lines
17 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
static void
computeIntegralImages( const Mat& matI, Mat& matS, Mat& matT, Mat& _FT )
{
CV_Assert( matI.type() == CV_8U );
int x, y, rows = matI.rows, cols = matI.cols;
matS.create(rows + 1, cols + 1, CV_32S);
matT.create(rows + 1, cols + 1, CV_32S);
_FT.create(rows + 1, cols + 1, CV_32S);
const uchar* I = matI.ptr<uchar>();
int *S = matS.ptr<int>(), *T = matT.ptr<int>(), *FT = _FT.ptr<int>();
int istep = (int)matI.step, step = (int)(matS.step/sizeof(S[0]));
for( x = 0; x <= cols; x++ )
S[x] = T[x] = FT[x] = 0;
S += step; T += step; FT += step;
S[0] = T[0] = 0;
FT[0] = I[0];
for( x = 1; x < cols; x++ )
{
S[x] = S[x-1] + I[x-1];
T[x] = I[x-1];
FT[x] = I[x] + I[x-1];
}
S[cols] = S[cols-1] + I[cols-1];
T[cols] = FT[cols] = I[cols-1];
for( y = 2; y <= rows; y++ )
{
I += istep, S += step, T += step, FT += step;
S[0] = S[-step]; S[1] = S[-step+1] + I[0];
T[0] = T[-step + 1];
T[1] = FT[0] = T[-step + 2] + I[-istep] + I[0];
FT[1] = FT[-step + 2] + I[-istep] + I[1] + I[0];
for( x = 2; x < cols; x++ )
{
S[x] = S[x - 1] + S[-step + x] - S[-step + x - 1] + I[x - 1];
T[x] = T[-step + x - 1] + T[-step + x + 1] - T[-step*2 + x] + I[-istep + x - 1] + I[x - 1];
FT[x] = FT[-step + x - 1] + FT[-step + x + 1] - FT[-step*2 + x] + I[x] + I[x-1];
}
S[cols] = S[cols - 1] + S[-step + cols] - S[-step + cols - 1] + I[cols - 1];
T[cols] = FT[cols] = T[-step + cols - 1] + I[-istep + cols - 1] + I[cols - 1];
}
}
struct StarFeature
{
int area;
int* p[8];
};
static int
StarDetectorComputeResponses( const Mat& img, Mat& responses, Mat& sizes, int maxSize )
{
const int MAX_PATTERN = 17;
static const int sizes0[] = {1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128, -1};
static const int pairs[][2] = {{1, 0}, {3, 1}, {4, 2}, {5, 3}, {7, 4}, {8, 5}, {9, 6},
{11, 8}, {13, 10}, {14, 11}, {15, 12}, {16, 14}, {-1, -1}};
float invSizes[MAX_PATTERN][2];
int sizes1[MAX_PATTERN];
#if CV_SSE2
__m128 invSizes4[MAX_PATTERN][2];
__m128 sizes1_4[MAX_PATTERN];
Cv32suf absmask;
absmask.i = 0x7fffffff;
volatile bool useSIMD = cv::checkHardwareSupport(CV_CPU_SSE2);
#endif
StarFeature f[MAX_PATTERN];
Mat sum, tilted, flatTilted;
int y, rows = img.rows, cols = img.cols;
int border, npatterns=0, maxIdx=0;
CV_Assert( img.type() == CV_8UC1 );
responses.create( img.size(), CV_32F );
sizes.create( img.size(), CV_16S );
while( pairs[npatterns][0] >= 0 && !
( sizes0[pairs[npatterns][0]] >= maxSize
|| sizes0[pairs[npatterns+1][0]] + sizes0[pairs[npatterns+1][0]]/2 >= std::min(rows, cols) ) )
{
++npatterns;
}
npatterns += (pairs[npatterns-1][0] >= 0);
maxIdx = pairs[npatterns-1][0];
computeIntegralImages( img, sum, tilted, flatTilted );
int step = (int)(sum.step/sum.elemSize());
for(int i = 0; i <= maxIdx; i++ )
{
int ur_size = sizes0[i], t_size = sizes0[i] + sizes0[i]/2;
int ur_area = (2*ur_size + 1)*(2*ur_size + 1);
int t_area = t_size*t_size + (t_size + 1)*(t_size + 1);
f[i].p[0] = sum.ptr<int>() + (ur_size + 1)*step + ur_size + 1;
f[i].p[1] = sum.ptr<int>() - ur_size*step + ur_size + 1;
f[i].p[2] = sum.ptr<int>() + (ur_size + 1)*step - ur_size;
f[i].p[3] = sum.ptr<int>() - ur_size*step - ur_size;
f[i].p[4] = tilted.ptr<int>() + (t_size + 1)*step + 1;
f[i].p[5] = flatTilted.ptr<int>() - t_size;
f[i].p[6] = flatTilted.ptr<int>() + t_size + 1;
f[i].p[7] = tilted.ptr<int>() - t_size*step + 1;
f[i].area = ur_area + t_area;
sizes1[i] = sizes0[i];
}
// negate end points of the size range
// for a faster rejection of very small or very large features in non-maxima suppression.
sizes1[0] = -sizes1[0];
sizes1[1] = -sizes1[1];
sizes1[maxIdx] = -sizes1[maxIdx];
border = sizes0[maxIdx] + sizes0[maxIdx]/2;
for(int i = 0; i < npatterns; i++ )
{
int innerArea = f[pairs[i][1]].area;
int outerArea = f[pairs[i][0]].area - innerArea;
invSizes[i][0] = 1.f/outerArea;
invSizes[i][1] = 1.f/innerArea;
}
#if CV_SSE2
if( useSIMD )
{
for(int i = 0; i < npatterns; i++ )
{
_mm_store_ps((float*)&invSizes4[i][0], _mm_set1_ps(invSizes[i][0]));
_mm_store_ps((float*)&invSizes4[i][1], _mm_set1_ps(invSizes[i][1]));
}
for(int i = 0; i <= maxIdx; i++ )
_mm_store_ps((float*)&sizes1_4[i], _mm_set1_ps((float)sizes1[i]));
}
#endif
for( y = 0; y < border; y++ )
{
float* r_ptr = responses.ptr<float>(y);
float* r_ptr2 = responses.ptr<float>(rows - 1 - y);
short* s_ptr = sizes.ptr<short>(y);
short* s_ptr2 = sizes.ptr<short>(rows - 1 - y);
memset( r_ptr, 0, cols*sizeof(r_ptr[0]));
memset( r_ptr2, 0, cols*sizeof(r_ptr2[0]));
memset( s_ptr, 0, cols*sizeof(s_ptr[0]));
memset( s_ptr2, 0, cols*sizeof(s_ptr2[0]));
}
for( y = border; y < rows - border; y++ )
{
int x = border;
float* r_ptr = responses.ptr<float>(y);
short* s_ptr = sizes.ptr<short>(y);
memset( r_ptr, 0, border*sizeof(r_ptr[0]));
memset( s_ptr, 0, border*sizeof(s_ptr[0]));
memset( r_ptr + cols - border, 0, border*sizeof(r_ptr[0]));
memset( s_ptr + cols - border, 0, border*sizeof(s_ptr[0]));
#if CV_SSE2
if( useSIMD )
{
__m128 absmask4 = _mm_set1_ps(absmask.f);
for( ; x <= cols - border - 4; x += 4 )
{
int ofs = y*step + x;
__m128 vals[MAX_PATTERN];
__m128 bestResponse = _mm_setzero_ps();
__m128 bestSize = _mm_setzero_ps();
for(int i = 0; i <= maxIdx; i++ )
{
const int** p = (const int**)&f[i].p[0];
__m128i r0 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[0]+ofs)),
_mm_loadu_si128((const __m128i*)(p[1]+ofs)));
__m128i r1 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[3]+ofs)),
_mm_loadu_si128((const __m128i*)(p[2]+ofs)));
__m128i r2 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[4]+ofs)),
_mm_loadu_si128((const __m128i*)(p[5]+ofs)));
__m128i r3 = _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(p[7]+ofs)),
_mm_loadu_si128((const __m128i*)(p[6]+ofs)));
r0 = _mm_add_epi32(_mm_add_epi32(r0,r1), _mm_add_epi32(r2,r3));
_mm_store_ps((float*)&vals[i], _mm_cvtepi32_ps(r0));
}
for(int i = 0; i < npatterns; i++ )
{
__m128 inner_sum = vals[pairs[i][1]];
__m128 outer_sum = _mm_sub_ps(vals[pairs[i][0]], inner_sum);
__m128 response = _mm_sub_ps(_mm_mul_ps(inner_sum, invSizes4[i][1]),
_mm_mul_ps(outer_sum, invSizes4[i][0]));
__m128 swapmask = _mm_cmpgt_ps(_mm_and_ps(response,absmask4),
_mm_and_ps(bestResponse,absmask4));
bestResponse = _mm_xor_ps(bestResponse,
_mm_and_ps(_mm_xor_ps(response,bestResponse), swapmask));
bestSize = _mm_xor_ps(bestSize,
_mm_and_ps(_mm_xor_ps(sizes1_4[pairs[i][0]], bestSize), swapmask));
}
_mm_storeu_ps(r_ptr + x, bestResponse);
_mm_storel_epi64((__m128i*)(s_ptr + x),
_mm_packs_epi32(_mm_cvtps_epi32(bestSize),_mm_setzero_si128()));
}
}
#endif
for( ; x < cols - border; x++ )
{
int ofs = y*step + x;
int vals[MAX_PATTERN];
float bestResponse = 0;
int bestSize = 0;
for(int i = 0; i <= maxIdx; i++ )
{
const int** p = (const int**)&f[i].p[0];
vals[i] = p[0][ofs] - p[1][ofs] - p[2][ofs] + p[3][ofs] +
p[4][ofs] - p[5][ofs] - p[6][ofs] + p[7][ofs];
}
for(int i = 0; i < npatterns; i++ )
{
int inner_sum = vals[pairs[i][1]];
int outer_sum = vals[pairs[i][0]] - inner_sum;
float response = inner_sum*invSizes[i][1] - outer_sum*invSizes[i][0];
if( fabs(response) > fabs(bestResponse) )
{
bestResponse = response;
bestSize = sizes1[pairs[i][0]];
}
}
r_ptr[x] = bestResponse;
s_ptr[x] = (short)bestSize;
}
}
return border;
}
static bool StarDetectorSuppressLines( const Mat& responses, const Mat& sizes, Point pt,
int lineThresholdProjected, int lineThresholdBinarized )
{
const float* r_ptr = responses.ptr<float>();
int rstep = (int)(responses.step/sizeof(r_ptr[0]));
const short* s_ptr = sizes.ptr<short>();
int sstep = (int)(sizes.step/sizeof(s_ptr[0]));
int sz = s_ptr[pt.y*sstep + pt.x];
int x, y, delta = sz/4, radius = delta*4;
float Lxx = 0, Lyy = 0, Lxy = 0;
int Lxxb = 0, Lyyb = 0, Lxyb = 0;
for( y = pt.y - radius; y <= pt.y + radius; y += delta )
for( x = pt.x - radius; x <= pt.x + radius; x += delta )
{
float Lx = r_ptr[y*rstep + x + 1] - r_ptr[y*rstep + x - 1];
float Ly = r_ptr[(y+1)*rstep + x] - r_ptr[(y-1)*rstep + x];
Lxx += Lx*Lx; Lyy += Ly*Ly; Lxy += Lx*Ly;
}
if( (Lxx + Lyy)*(Lxx + Lyy) >= lineThresholdProjected*(Lxx*Lyy - Lxy*Lxy) )
return true;
for( y = pt.y - radius; y <= pt.y + radius; y += delta )
for( x = pt.x - radius; x <= pt.x + radius; x += delta )
{
int Lxb = (s_ptr[y*sstep + x + 1] == sz) - (s_ptr[y*sstep + x - 1] == sz);
int Lyb = (s_ptr[(y+1)*sstep + x] == sz) - (s_ptr[(y-1)*sstep + x] == sz);
Lxxb += Lxb * Lxb; Lyyb += Lyb * Lyb; Lxyb += Lxb * Lyb;
}
if( (Lxxb + Lyyb)*(Lxxb + Lyyb) >= lineThresholdBinarized*(Lxxb*Lyyb - Lxyb*Lxyb) )
return true;
return false;
}
static void
StarDetectorSuppressNonmax( const Mat& responses, const Mat& sizes,
std::vector<KeyPoint>& keypoints, int border,
int responseThreshold,
int lineThresholdProjected,
int lineThresholdBinarized,
int suppressNonmaxSize )
{
int x, y, x1, y1, delta = suppressNonmaxSize/2;
int rows = responses.rows, cols = responses.cols;
const float* r_ptr = responses.ptr<float>();
int rstep = (int)(responses.step/sizeof(r_ptr[0]));
const short* s_ptr = sizes.ptr<short>();
int sstep = (int)(sizes.step/sizeof(s_ptr[0]));
short featureSize = 0;
for( y = border; y < rows - border; y += delta+1 )
for( x = border; x < cols - border; x += delta+1 )
{
float maxResponse = (float)responseThreshold;
float minResponse = (float)-responseThreshold;
Point maxPt(-1, -1), minPt(-1, -1);
int tileEndY = MIN(y + delta, rows - border - 1);
int tileEndX = MIN(x + delta, cols - border - 1);
for( y1 = y; y1 <= tileEndY; y1++ )
for( x1 = x; x1 <= tileEndX; x1++ )
{
float val = r_ptr[y1*rstep + x1];
if( maxResponse < val )
{
maxResponse = val;
maxPt = Point(x1, y1);
}
else if( minResponse > val )
{
minResponse = val;
minPt = Point(x1, y1);
}
}
if( maxPt.x >= 0 )
{
for( y1 = maxPt.y - delta; y1 <= maxPt.y + delta; y1++ )
for( x1 = maxPt.x - delta; x1 <= maxPt.x + delta; x1++ )
{
float val = r_ptr[y1*rstep + x1];
if( val >= maxResponse && (y1 != maxPt.y || x1 != maxPt.x))
goto skip_max;
}
if( (featureSize = s_ptr[maxPt.y*sstep + maxPt.x]) >= 4 &&
!StarDetectorSuppressLines( responses, sizes, maxPt, lineThresholdProjected,
lineThresholdBinarized ))
{
KeyPoint kpt((float)maxPt.x, (float)maxPt.y, featureSize, -1, maxResponse);
keypoints.push_back(kpt);
}
}
skip_max:
if( minPt.x >= 0 )
{
for( y1 = minPt.y - delta; y1 <= minPt.y + delta; y1++ )
for( x1 = minPt.x - delta; x1 <= minPt.x + delta; x1++ )
{
float val = r_ptr[y1*rstep + x1];
if( val <= minResponse && (y1 != minPt.y || x1 != minPt.x))
goto skip_min;
}
if( (featureSize = s_ptr[minPt.y*sstep + minPt.x]) >= 4 &&
!StarDetectorSuppressLines( responses, sizes, minPt,
lineThresholdProjected, lineThresholdBinarized))
{
KeyPoint kpt((float)minPt.x, (float)minPt.y, featureSize, -1, maxResponse);
keypoints.push_back(kpt);
}
}
skip_min:
;
}
}
StarDetector::StarDetector(int _maxSize, int _responseThreshold,
int _lineThresholdProjected,
int _lineThresholdBinarized,
int _suppressNonmaxSize)
: maxSize(_maxSize), responseThreshold(_responseThreshold),
lineThresholdProjected(_lineThresholdProjected),
lineThresholdBinarized(_lineThresholdBinarized),
suppressNonmaxSize(_suppressNonmaxSize)
{}
void StarDetector::detectImpl( const Mat& image, std::vector<KeyPoint>& keypoints, const Mat& mask ) const
{
Mat grayImage = image;
if( image.type() != CV_8U ) cvtColor( image, grayImage, CV_BGR2GRAY );
(*this)(grayImage, keypoints);
KeyPointsFilter::runByPixelsMask( keypoints, mask );
}
void StarDetector::operator()(const Mat& img, std::vector<KeyPoint>& keypoints) const
{
Mat responses, sizes;
int border = StarDetectorComputeResponses( img, responses, sizes, maxSize );
keypoints.clear();
if( border >= 0 )
StarDetectorSuppressNonmax( responses, sizes, keypoints, border,
responseThreshold, lineThresholdProjected,
lineThresholdBinarized, suppressNonmaxSize );
}
}