562 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			562 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef _OPENCV_FLANN_HPP_
 | |
| #define _OPENCV_FLANN_HPP_
 | |
| 
 | |
| #include "opencv2/core.hpp"
 | |
| #include "opencv2/flann/miniflann.hpp"
 | |
| #include "opencv2/flann/flann_base.hpp"
 | |
| 
 | |
| /**
 | |
| @defgroup flann Clustering and Search in Multi-Dimensional Spaces
 | |
| 
 | |
| This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
 | |
| Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
 | |
| neighbor search in large datasets and for high dimensional features. More information about FLANN
 | |
| can be found in @cite Muja2009 .
 | |
| */
 | |
| 
 | |
| namespace cvflann
 | |
| {
 | |
|     CV_EXPORTS flann_distance_t flann_distance_type();
 | |
|     FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| namespace flann
 | |
| {
 | |
| 
 | |
| 
 | |
| //! @addtogroup flann
 | |
| //! @{
 | |
| 
 | |
| template <typename T> struct CvType {};
 | |
| template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
 | |
| template <> struct CvType<char> { static int type() { return CV_8S; } };
 | |
| template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
 | |
| template <> struct CvType<short> { static int type() { return CV_16S; } };
 | |
| template <> struct CvType<int> { static int type() { return CV_32S; } };
 | |
| template <> struct CvType<float> { static int type() { return CV_32F; } };
 | |
| template <> struct CvType<double> { static int type() { return CV_64F; } };
 | |
| 
 | |
| 
 | |
| // bring the flann parameters into this namespace
 | |
| using ::cvflann::get_param;
 | |
| using ::cvflann::print_params;
 | |
| 
 | |
| // bring the flann distances into this namespace
 | |
| using ::cvflann::L2_Simple;
 | |
| using ::cvflann::L2;
 | |
| using ::cvflann::L1;
 | |
| using ::cvflann::MinkowskiDistance;
 | |
| using ::cvflann::MaxDistance;
 | |
| using ::cvflann::HammingLUT;
 | |
| using ::cvflann::Hamming;
 | |
| using ::cvflann::Hamming2;
 | |
| using ::cvflann::HistIntersectionDistance;
 | |
| using ::cvflann::HellingerDistance;
 | |
| using ::cvflann::ChiSquareDistance;
 | |
| using ::cvflann::KL_Divergence;
 | |
| 
 | |
| 
 | |
| /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
 | |
| the index is built.
 | |
|  */
 | |
| template <typename Distance>
 | |
| class GenericIndex
 | |
| {
 | |
| public:
 | |
|         typedef typename Distance::ElementType ElementType;
 | |
|         typedef typename Distance::ResultType DistanceType;
 | |
| 
 | |
|         /** @brief Constructs a nearest neighbor search index for a given dataset.
 | |
| 
 | |
|         @param features Matrix of containing the features(points) to index. The size of the matrix is
 | |
|         num_features x feature_dimensionality and the data type of the elements in the matrix must
 | |
|         coincide with the type of the index.
 | |
|         @param params Structure containing the index parameters. The type of index that will be
 | |
|         constructed depends on the type of this parameter. See the description.
 | |
|         @param distance
 | |
| 
 | |
|         The method constructs a fast search structure from a set of features using the specified algorithm
 | |
|         with specified parameters, as defined by params. params is a reference to one of the following class
 | |
|         IndexParams descendants:
 | |
| 
 | |
|         - **LinearIndexParams** When passing an object of this type, the index will perform a linear,
 | |
|         brute-force search. :
 | |
|         @code
 | |
|         struct LinearIndexParams : public IndexParams
 | |
|         {
 | |
|         };
 | |
|         @endcode
 | |
|         - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
 | |
|         a set of randomized kd-trees which will be searched in parallel. :
 | |
|         @code
 | |
|         struct KDTreeIndexParams : public IndexParams
 | |
|         {
 | |
|             KDTreeIndexParams( int trees = 4 );
 | |
|         };
 | |
|         @endcode
 | |
|         - **KMeansIndexParams** When passing an object of this type the index constructed will be a
 | |
|         hierarchical k-means tree. :
 | |
|         @code
 | |
|         struct KMeansIndexParams : public IndexParams
 | |
|         {
 | |
|             KMeansIndexParams(
 | |
|                 int branching = 32,
 | |
|                 int iterations = 11,
 | |
|                 flann_centers_init_t centers_init = CENTERS_RANDOM,
 | |
|                 float cb_index = 0.2 );
 | |
|         };
 | |
|         @endcode
 | |
|         - **CompositeIndexParams** When using a parameters object of this type the index created
 | |
|         combines the randomized kd-trees and the hierarchical k-means tree. :
 | |
|         @code
 | |
|         struct CompositeIndexParams : public IndexParams
 | |
|         {
 | |
|             CompositeIndexParams(
 | |
|                 int trees = 4,
 | |
|                 int branching = 32,
 | |
|                 int iterations = 11,
 | |
|                 flann_centers_init_t centers_init = CENTERS_RANDOM,
 | |
|                 float cb_index = 0.2 );
 | |
|         };
 | |
|         @endcode
 | |
|         - **LshIndexParams** When using a parameters object of this type the index created uses
 | |
|         multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
 | |
|         by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
 | |
|         International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) :
 | |
|         @code
 | |
|         struct LshIndexParams : public IndexParams
 | |
|         {
 | |
|             LshIndexParams(
 | |
|                 unsigned int table_number,
 | |
|                 unsigned int key_size,
 | |
|                 unsigned int multi_probe_level );
 | |
|         };
 | |
|         @endcode
 | |
|         - **AutotunedIndexParams** When passing an object of this type the index created is
 | |
|         automatically tuned to offer the best performance, by choosing the optimal index type
 | |
|         (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
 | |
|         @code
 | |
|         struct AutotunedIndexParams : public IndexParams
 | |
|         {
 | |
|             AutotunedIndexParams(
 | |
|                 float target_precision = 0.9,
 | |
|                 float build_weight = 0.01,
 | |
|                 float memory_weight = 0,
 | |
|                 float sample_fraction = 0.1 );
 | |
|         };
 | |
|         @endcode
 | |
|         - **SavedIndexParams** This object type is used for loading a previously saved index from the
 | |
|         disk. :
 | |
|         @code
 | |
|         struct SavedIndexParams : public IndexParams
 | |
|         {
 | |
|             SavedIndexParams( String filename );
 | |
|         };
 | |
|         @endcode
 | |
|          */
 | |
|         GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
 | |
| 
 | |
|         ~GenericIndex();
 | |
| 
 | |
|         /** @brief Performs a K-nearest neighbor search for a given query point using the index.
 | |
| 
 | |
|         @param query The query point
 | |
|         @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
 | |
|         at least knn size.
 | |
|         @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
 | |
|         at least knn size.
 | |
|         @param knn Number of nearest neighbors to search for.
 | |
|         @param params SearchParams
 | |
|          */
 | |
|         void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
 | |
|                        std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
 | |
|         void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
 | |
| 
 | |
|         int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
 | |
|                          std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 | |
|         int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
 | |
|                          DistanceType radius, const ::cvflann::SearchParams& params);
 | |
| 
 | |
|         void save(String filename) { nnIndex->save(filename); }
 | |
| 
 | |
|         int veclen() const { return nnIndex->veclen(); }
 | |
| 
 | |
|         int size() const { return nnIndex->size(); }
 | |
| 
 | |
|         ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
 | |
| 
 | |
|         FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
 | |
| 
 | |
| private:
 | |
|         ::cvflann::Index<Distance>* nnIndex;
 | |
| };
 | |
| 
 | |
| //! @cond IGNORED
 | |
| 
 | |
| #define FLANN_DISTANCE_CHECK \
 | |
|     if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
 | |
|         printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
 | |
|         "the distance using cvflann::set_distance_type. This is no longer working as expected "\
 | |
|         "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
 | |
|         "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
 | |
|     }
 | |
| 
 | |
| 
 | |
| template <typename Distance>
 | |
| GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
 | |
| {
 | |
|     CV_Assert(dataset.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(dataset.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
 | |
| 
 | |
|     nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
 | |
| 
 | |
|     FLANN_DISTANCE_CHECK
 | |
| 
 | |
|     nnIndex->buildIndex();
 | |
| }
 | |
| 
 | |
| template <typename Distance>
 | |
| GenericIndex<Distance>::~GenericIndex()
 | |
| {
 | |
|     delete nnIndex;
 | |
| }
 | |
| 
 | |
| template <typename Distance>
 | |
| void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | |
|     ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | |
| 
 | |
|     FLANN_DISTANCE_CHECK
 | |
| 
 | |
|     nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename Distance>
 | |
| void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     CV_Assert(queries.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(queries.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
 | |
| 
 | |
|     CV_Assert(indices.type() == CV_32S);
 | |
|     CV_Assert(indices.isContinuous());
 | |
|     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | |
| 
 | |
|     CV_Assert(dists.type() == CvType<DistanceType>::type());
 | |
|     CV_Assert(dists.isContinuous());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | |
| 
 | |
|     FLANN_DISTANCE_CHECK
 | |
| 
 | |
|     nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 | |
| }
 | |
| 
 | |
| template <typename Distance>
 | |
| int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | |
|     ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | |
| 
 | |
|     FLANN_DISTANCE_CHECK
 | |
| 
 | |
|     return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | |
| }
 | |
| 
 | |
| template <typename Distance>
 | |
| int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     CV_Assert(query.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(query.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
 | |
| 
 | |
|     CV_Assert(indices.type() == CV_32S);
 | |
|     CV_Assert(indices.isContinuous());
 | |
|     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | |
| 
 | |
|     CV_Assert(dists.type() == CvType<DistanceType>::type());
 | |
|     CV_Assert(dists.isContinuous());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | |
| 
 | |
|     FLANN_DISTANCE_CHECK
 | |
| 
 | |
|     return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | |
| }
 | |
| 
 | |
| //! @endcond
 | |
| 
 | |
| /**
 | |
|  * @deprecated Use GenericIndex class instead
 | |
|  */
 | |
| template <typename T>
 | |
| class
 | |
| #ifndef _MSC_VER
 | |
|  FLANN_DEPRECATED
 | |
| #endif
 | |
|  Index_ {
 | |
| public:
 | |
|         typedef typename L2<T>::ElementType ElementType;
 | |
|         typedef typename L2<T>::ResultType DistanceType;
 | |
| 
 | |
|     Index_(const Mat& features, const ::cvflann::IndexParams& params);
 | |
| 
 | |
|     ~Index_();
 | |
| 
 | |
|     void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
 | |
|     void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
 | |
| 
 | |
|     int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 | |
|     int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& params);
 | |
| 
 | |
|     void save(String filename)
 | |
|         {
 | |
|             if (nnIndex_L1) nnIndex_L1->save(filename);
 | |
|             if (nnIndex_L2) nnIndex_L2->save(filename);
 | |
|         }
 | |
| 
 | |
|     int veclen() const
 | |
|     {
 | |
|             if (nnIndex_L1) return nnIndex_L1->veclen();
 | |
|             if (nnIndex_L2) return nnIndex_L2->veclen();
 | |
|         }
 | |
| 
 | |
|     int size() const
 | |
|     {
 | |
|             if (nnIndex_L1) return nnIndex_L1->size();
 | |
|             if (nnIndex_L2) return nnIndex_L2->size();
 | |
|         }
 | |
| 
 | |
|         ::cvflann::IndexParams getParameters()
 | |
|         {
 | |
|             if (nnIndex_L1) return nnIndex_L1->getParameters();
 | |
|             if (nnIndex_L2) return nnIndex_L2->getParameters();
 | |
| 
 | |
|         }
 | |
| 
 | |
|         FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
 | |
|         {
 | |
|             if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
 | |
|             if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
 | |
|         }
 | |
| 
 | |
| private:
 | |
|         // providing backwards compatibility for L2 and L1 distances (most common)
 | |
|         ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
 | |
|         ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
 | |
| };
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| template <typename T>
 | |
| class FLANN_DEPRECATED Index_;
 | |
| #endif
 | |
| 
 | |
| //! @cond IGNORED
 | |
| 
 | |
| template <typename T>
 | |
| Index_<T>::Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
 | |
| {
 | |
|     printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
 | |
| 
 | |
|     CV_Assert(dataset.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(dataset.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
 | |
| 
 | |
|     if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
 | |
|         nnIndex_L1 = NULL;
 | |
|         nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
 | |
|     }
 | |
|     else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
 | |
|         nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
 | |
|         nnIndex_L2 = NULL;
 | |
|     }
 | |
|     else {
 | |
|         printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
 | |
|         "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
 | |
|         CV_Assert(0);
 | |
|     }
 | |
|     if (nnIndex_L1) nnIndex_L1->buildIndex();
 | |
|     if (nnIndex_L2) nnIndex_L2->buildIndex();
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| Index_<T>::~Index_()
 | |
| {
 | |
|     if (nnIndex_L1) delete nnIndex_L1;
 | |
|     if (nnIndex_L2) delete nnIndex_L2;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void Index_<T>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | |
|     ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | |
| 
 | |
|     if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 | |
|     if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
 | |
| }
 | |
| 
 | |
| 
 | |
| template <typename T>
 | |
| void Index_<T>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     CV_Assert(queries.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(queries.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
 | |
| 
 | |
|     CV_Assert(indices.type() == CV_32S);
 | |
|     CV_Assert(indices.isContinuous());
 | |
|     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | |
| 
 | |
|     CV_Assert(dists.type() == CvType<DistanceType>::type());
 | |
|     CV_Assert(dists.isContinuous());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | |
| 
 | |
|     if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 | |
|     if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| int Index_<T>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
 | |
|     ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
 | |
| 
 | |
|     if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | |
|     if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| int Index_<T>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
 | |
| {
 | |
|     CV_Assert(query.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(query.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
 | |
| 
 | |
|     CV_Assert(indices.type() == CV_32S);
 | |
|     CV_Assert(indices.isContinuous());
 | |
|     ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
 | |
| 
 | |
|     CV_Assert(dists.type() == CvType<DistanceType>::type());
 | |
|     CV_Assert(dists.isContinuous());
 | |
|     ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
 | |
| 
 | |
|     if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | |
|     if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
 | |
| }
 | |
| 
 | |
| //! @endcond
 | |
| 
 | |
| /** @brief Clusters features using hierarchical k-means algorithm.
 | |
| 
 | |
| @param features The points to be clustered. The matrix must have elements of type
 | |
| Distance::ElementType.
 | |
| @param centers The centers of the clusters obtained. The matrix must have type
 | |
| Distance::ResultType. The number of rows in this matrix represents the number of clusters desired,
 | |
| however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
 | |
| computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
 | |
| clusters desired, where branching is the tree's branching factor (see description of the
 | |
| KMeansIndexParams).
 | |
| @param params Parameters used in the construction of the hierarchical k-means tree.
 | |
| @param d Distance to be used for clustering.
 | |
| 
 | |
| The method clusters the given feature vectors by constructing a hierarchical k-means tree and
 | |
| choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
 | |
| found.
 | |
|  */
 | |
| template <typename Distance>
 | |
| int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
 | |
|                            Distance d = Distance())
 | |
| {
 | |
|     typedef typename Distance::ElementType ElementType;
 | |
|     typedef typename Distance::ResultType DistanceType;
 | |
| 
 | |
|     CV_Assert(features.type() == CvType<ElementType>::type());
 | |
|     CV_Assert(features.isContinuous());
 | |
|     ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
 | |
| 
 | |
|     CV_Assert(centers.type() == CvType<DistanceType>::type());
 | |
|     CV_Assert(centers.isContinuous());
 | |
|     ::cvflann::Matrix<DistanceType> m_centers((DistanceType*)centers.ptr<DistanceType>(0), centers.rows, centers.cols);
 | |
| 
 | |
|     return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
 | |
| }
 | |
| 
 | |
| /** @deprecated
 | |
| */
 | |
| template <typename ELEM_TYPE, typename DIST_TYPE>
 | |
| FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
 | |
| {
 | |
|     printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
 | |
|         "cv::flann::hierarchicalClustering<Distance> instead\n");
 | |
| 
 | |
|     if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
 | |
|         return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
 | |
|     }
 | |
|     else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
 | |
|         return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
 | |
|     }
 | |
|     else {
 | |
|         printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
 | |
|         "compatibility for the L1 and L2 distances. "
 | |
|         "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
 | |
|         CV_Assert(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| //! @} flann
 | |
| 
 | |
| } } // namespace cv::flann
 | |
| 
 | |
| #endif
 | 
