191 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas
 | |
| // Digital Ltd. LLC
 | |
| //
 | |
| // All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are
 | |
| // met:
 | |
| // *       Redistributions of source code must retain the above copyright
 | |
| // notice, this list of conditions and the following disclaimer.
 | |
| // *       Redistributions in binary form must reproduce the above
 | |
| // copyright notice, this list of conditions and the following disclaimer
 | |
| // in the documentation and/or other materials provided with the
 | |
| // distribution.
 | |
| // *       Neither the name of Industrial Light & Magic nor the names of
 | |
| // its contributors may be used to endorse or promote products derived
 | |
| // from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| ///////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifndef INCLUDED_IMATHFRAME_H
 | |
| #define INCLUDED_IMATHFRAME_H
 | |
| 
 | |
| namespace Imath {
 | |
| 
 | |
| template<class T> class Vec3;
 | |
| template<class T> class Matrix44;
 | |
| 
 | |
| //
 | |
| //  These methods compute a set of reference frames, defined by their
 | |
| //  transformation matrix, along a curve. It is designed so that the
 | |
| //  array of points and the array of matrices used to fetch these routines
 | |
| //  don't need to be ordered as the curve.
 | |
| //
 | |
| //  A typical usage would be :
 | |
| //
 | |
| //      m[0] = Imath::firstFrame( p[0], p[1], p[2] );
 | |
| //      for( int i = 1; i < n - 1; i++ )
 | |
| //      {
 | |
| //          m[i] = Imath::nextFrame( m[i-1], p[i-1], p[i], t[i-1], t[i] );
 | |
| //      }
 | |
| //      m[n-1] = Imath::lastFrame( m[n-2], p[n-2], p[n-1] );
 | |
| //
 | |
| //  See Graphics Gems I for the underlying algorithm.
 | |
| //
 | |
| 
 | |
| template<class T> Matrix44<T> firstFrame( const Vec3<T>&,    // First point
 | |
|                                           const Vec3<T>&,    // Second point
 | |
|                                           const Vec3<T>& );  // Third point
 | |
| 
 | |
| template<class T> Matrix44<T> nextFrame( const Matrix44<T>&, // Previous matrix
 | |
|                                          const Vec3<T>&,     // Previous point
 | |
|                                          const Vec3<T>&,     // Current point
 | |
|                                          Vec3<T>&,           // Previous tangent
 | |
|                                          Vec3<T>& );         // Current tangent
 | |
| 
 | |
| template<class T> Matrix44<T> lastFrame( const Matrix44<T>&, // Previous matrix
 | |
|                                          const Vec3<T>&,     // Previous point
 | |
|                                          const Vec3<T>& );   // Last point
 | |
| 
 | |
| //
 | |
| //  firstFrame - Compute the first reference frame along a curve.
 | |
| //
 | |
| //  This function returns the transformation matrix to the reference frame
 | |
| //  defined by the three points 'pi', 'pj' and 'pk'. Note that if the two
 | |
| //  vectors <pi,pj> and <pi,pk> are colinears, an arbitrary twist value will
 | |
| //  be choosen.
 | |
| //
 | |
| //  Throw 'NullVecExc' if 'pi' and 'pj' are equals.
 | |
| //
 | |
| 
 | |
| template<class T> Matrix44<T> firstFrame
 | |
| (
 | |
|     const Vec3<T>& pi,             // First point
 | |
|     const Vec3<T>& pj,             // Second point
 | |
|     const Vec3<T>& pk )            // Third point
 | |
| {
 | |
|     Vec3<T> t = pj - pi; t.normalizeExc();
 | |
| 
 | |
|     Vec3<T> n = t.cross( pk - pi ); n.normalize();
 | |
|     if( n.length() == 0.0f )
 | |
|     {
 | |
|         int i = fabs( t[0] ) < fabs( t[1] ) ? 0 : 1;
 | |
|         if( fabs( t[2] ) < fabs( t[i] )) i = 2;
 | |
| 
 | |
|         Vec3<T> v( 0.0, 0.0, 0.0 ); v[i] = 1.0;
 | |
|         n = t.cross( v ); n.normalize();
 | |
|     }
 | |
| 
 | |
|     Vec3<T> b = t.cross( n );
 | |
| 
 | |
|     Matrix44<T> M;
 | |
| 
 | |
|     M[0][0] =  t[0]; M[0][1] =  t[1]; M[0][2] =  t[2]; M[0][3] = 0.0,
 | |
|     M[1][0] =  n[0]; M[1][1] =  n[1]; M[1][2] =  n[2]; M[1][3] = 0.0,
 | |
|     M[2][0] =  b[0]; M[2][1] =  b[1]; M[2][2] =  b[2]; M[2][3] = 0.0,
 | |
|     M[3][0] = pi[0]; M[3][1] = pi[1]; M[3][2] = pi[2]; M[3][3] = 1.0;
 | |
| 
 | |
|     return M;
 | |
| }
 | |
| 
 | |
| //
 | |
| //  nextFrame - Compute the next reference frame along a curve.
 | |
| //
 | |
| //  This function returns the transformation matrix to the next reference
 | |
| //  frame defined by the previously computed transformation matrix and the
 | |
| //  new point and tangent vector along the curve.
 | |
| //
 | |
| 
 | |
| template<class T> Matrix44<T> nextFrame
 | |
| (
 | |
|     const Matrix44<T>&  Mi,             // Previous matrix
 | |
|     const Vec3<T>&      pi,             // Previous point
 | |
|     const Vec3<T>&      pj,             // Current point
 | |
|     Vec3<T>&            ti,             // Previous tangent vector
 | |
|     Vec3<T>&            tj )            // Current tangent vector
 | |
| {
 | |
|     Vec3<T> a(0.0, 0.0, 0.0);		// Rotation axis.
 | |
|     T r = 0.0;				// Rotation angle.
 | |
| 
 | |
|     if( ti.length() != 0.0 && tj.length() != 0.0 )
 | |
|     {
 | |
|         ti.normalize(); tj.normalize();
 | |
|         T dot = ti.dot( tj );
 | |
| 
 | |
|         //
 | |
|         //  This is *really* necessary :
 | |
|         //
 | |
| 
 | |
|         if( dot > 1.0 ) dot = 1.0;
 | |
|         else if( dot < -1.0 ) dot = -1.0;
 | |
| 
 | |
|         r = acosf( dot );
 | |
|         a = ti.cross( tj );
 | |
|     }
 | |
| 
 | |
|     if( a.length() != 0.0 && r != 0.0 )
 | |
|     {
 | |
|         Matrix44<T> R; R.setAxisAngle( a, r );
 | |
|         Matrix44<T> Tj; Tj.translate(  pj );
 | |
|         Matrix44<T> Ti; Ti.translate( -pi );
 | |
| 
 | |
|         return Mi * Ti * R * Tj;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Matrix44<T> Tr; Tr.translate( pj - pi );
 | |
| 
 | |
|         return Mi * Tr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| //
 | |
| //  lastFrame - Compute the last reference frame along a curve.
 | |
| //
 | |
| //  This function returns the transformation matrix to the last reference
 | |
| //  frame defined by the previously computed transformation matrix and the
 | |
| //  last point along the curve.
 | |
| //
 | |
| 
 | |
| template<class T> Matrix44<T> lastFrame
 | |
| (
 | |
|     const Matrix44<T>&  Mi,             // Previous matrix
 | |
|     const Vec3<T>&      pi,             // Previous point
 | |
|     const Vec3<T>&      pj )            // Last point
 | |
| {
 | |
|     Matrix44<T> Tr; Tr.translate( pj - pi );
 | |
| 
 | |
|     return Mi * Tr;
 | |
| }
 | |
| 
 | |
| } // namespace Imath
 | |
| 
 | |
| #endif
 | 
