289 lines
9.2 KiB
C++
289 lines
9.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install, copy or use the software.
|
|
//
|
|
// Copyright (C) 2009, Farhad Dadgostar
|
|
// Intel Corporation and third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#define ASD_INTENSITY_SET_PIXEL(pointer, qq) {(*pointer) = (unsigned char)qq;}
|
|
|
|
#define ASD_IS_IN_MOTION(pointer, v, threshold) ((abs((*(pointer)) - (v)) > (threshold)) ? true : false)
|
|
|
|
void CvAdaptiveSkinDetector::initData(IplImage *src, int widthDivider, int heightDivider)
|
|
{
|
|
CvSize imageSize = cvSize(src->width/widthDivider, src->height/heightDivider);
|
|
|
|
imgHueFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgShrinked = cvCreateImage(imageSize, IPL_DEPTH_8U, src->nChannels);
|
|
imgSaturationFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgMotionFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgTemp = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgFilteredFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgGrayFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgLastGrayFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 1);
|
|
imgHSVFrame = cvCreateImage(imageSize, IPL_DEPTH_8U, 3);
|
|
};
|
|
|
|
CvAdaptiveSkinDetector::CvAdaptiveSkinDetector(int samplingDivider, int morphingMethod)
|
|
{
|
|
nSkinHueLowerBound = GSD_HUE_LT;
|
|
nSkinHueUpperBound = GSD_HUE_UT;
|
|
|
|
fHistogramMergeFactor = 0.05; // empirical result
|
|
fHuePercentCovered = 0.95; // empirical result
|
|
|
|
nMorphingMethod = morphingMethod;
|
|
nSamplingDivider = samplingDivider;
|
|
|
|
nFrameCount = 0;
|
|
nStartCounter = 0;
|
|
|
|
imgHueFrame = NULL;
|
|
imgMotionFrame = NULL;
|
|
imgTemp = NULL;
|
|
imgFilteredFrame = NULL;
|
|
imgShrinked = NULL;
|
|
imgGrayFrame = NULL;
|
|
imgLastGrayFrame = NULL;
|
|
imgSaturationFrame = NULL;
|
|
imgHSVFrame = NULL;
|
|
};
|
|
|
|
CvAdaptiveSkinDetector::~CvAdaptiveSkinDetector()
|
|
{
|
|
cvReleaseImage(&imgHueFrame);
|
|
cvReleaseImage(&imgSaturationFrame);
|
|
cvReleaseImage(&imgMotionFrame);
|
|
cvReleaseImage(&imgTemp);
|
|
cvReleaseImage(&imgFilteredFrame);
|
|
cvReleaseImage(&imgShrinked);
|
|
cvReleaseImage(&imgGrayFrame);
|
|
cvReleaseImage(&imgLastGrayFrame);
|
|
cvReleaseImage(&imgHSVFrame);
|
|
};
|
|
|
|
void CvAdaptiveSkinDetector::process(IplImage *inputBGRImage, IplImage *outputHueMask)
|
|
{
|
|
IplImage *src = inputBGRImage;
|
|
|
|
int h, v, i, l;
|
|
bool isInit = false;
|
|
|
|
nFrameCount++;
|
|
|
|
if (imgHueFrame == NULL)
|
|
{
|
|
isInit = true;
|
|
initData(src, nSamplingDivider, nSamplingDivider);
|
|
}
|
|
|
|
unsigned char *pShrinked, *pHueFrame, *pMotionFrame, *pLastGrayFrame, *pFilteredFrame, *pGrayFrame;
|
|
pShrinked = (unsigned char *)imgShrinked->imageData;
|
|
pHueFrame = (unsigned char *)imgHueFrame->imageData;
|
|
pMotionFrame = (unsigned char *)imgMotionFrame->imageData;
|
|
pLastGrayFrame = (unsigned char *)imgLastGrayFrame->imageData;
|
|
pFilteredFrame = (unsigned char *)imgFilteredFrame->imageData;
|
|
pGrayFrame = (unsigned char *)imgGrayFrame->imageData;
|
|
|
|
if ((src->width != imgHueFrame->width) || (src->height != imgHueFrame->height))
|
|
{
|
|
cvResize(src, imgShrinked);
|
|
cvCvtColor(imgShrinked, imgHSVFrame, CV_BGR2HSV);
|
|
}
|
|
else
|
|
{
|
|
cvCvtColor(src, imgHSVFrame, CV_BGR2HSV);
|
|
}
|
|
|
|
cvSplit(imgHSVFrame, imgHueFrame, imgSaturationFrame, imgGrayFrame, 0);
|
|
|
|
cvSetZero(imgMotionFrame);
|
|
cvSetZero(imgFilteredFrame);
|
|
|
|
l = imgHueFrame->height * imgHueFrame->width;
|
|
|
|
for (i = 0; i < l; i++)
|
|
{
|
|
v = (*pGrayFrame);
|
|
if ((v >= GSD_INTENSITY_LT) && (v <= GSD_INTENSITY_UT))
|
|
{
|
|
h = (*pHueFrame);
|
|
if ((h >= GSD_HUE_LT) && (h <= GSD_HUE_UT))
|
|
{
|
|
if ((h >= nSkinHueLowerBound) && (h <= nSkinHueUpperBound))
|
|
ASD_INTENSITY_SET_PIXEL(pFilteredFrame, h);
|
|
|
|
if (ASD_IS_IN_MOTION(pLastGrayFrame, v, 7))
|
|
ASD_INTENSITY_SET_PIXEL(pMotionFrame, h);
|
|
}
|
|
}
|
|
pShrinked += 3;
|
|
pGrayFrame++;
|
|
pLastGrayFrame++;
|
|
pMotionFrame++;
|
|
pHueFrame++;
|
|
pFilteredFrame++;
|
|
}
|
|
|
|
if (isInit)
|
|
cvCalcHist(&imgHueFrame, skinHueHistogram.fHistogram);
|
|
|
|
cvCopy(imgGrayFrame, imgLastGrayFrame);
|
|
|
|
cvErode(imgMotionFrame, imgTemp); // eliminate disperse pixels, which occur because of the camera noise
|
|
cvDilate(imgTemp, imgMotionFrame);
|
|
|
|
cvCalcHist(&imgMotionFrame, histogramHueMotion.fHistogram);
|
|
|
|
skinHueHistogram.mergeWith(&histogramHueMotion, fHistogramMergeFactor);
|
|
|
|
skinHueHistogram.findCurveThresholds(nSkinHueLowerBound, nSkinHueUpperBound, 1 - fHuePercentCovered);
|
|
|
|
switch (nMorphingMethod)
|
|
{
|
|
case MORPHING_METHOD_ERODE :
|
|
cvErode(imgFilteredFrame, imgTemp);
|
|
cvCopy(imgTemp, imgFilteredFrame);
|
|
break;
|
|
case MORPHING_METHOD_ERODE_ERODE :
|
|
cvErode(imgFilteredFrame, imgTemp);
|
|
cvErode(imgTemp, imgFilteredFrame);
|
|
break;
|
|
case MORPHING_METHOD_ERODE_DILATE :
|
|
cvErode(imgFilteredFrame, imgTemp);
|
|
cvDilate(imgTemp, imgFilteredFrame);
|
|
break;
|
|
}
|
|
|
|
if (outputHueMask != NULL)
|
|
cvCopy(imgFilteredFrame, outputHueMask);
|
|
};
|
|
|
|
|
|
//------------------------- Histogram for Adaptive Skin Detector -------------------------//
|
|
|
|
CvAdaptiveSkinDetector::Histogram::Histogram()
|
|
{
|
|
int histogramSize[] = { HistogramSize };
|
|
float range[] = { GSD_HUE_LT, GSD_HUE_UT };
|
|
float *ranges[] = { range };
|
|
fHistogram = cvCreateHist(1, histogramSize, CV_HIST_ARRAY, ranges, 1);
|
|
cvClearHist(fHistogram);
|
|
};
|
|
|
|
CvAdaptiveSkinDetector::Histogram::~Histogram()
|
|
{
|
|
cvReleaseHist(&fHistogram);
|
|
};
|
|
|
|
int CvAdaptiveSkinDetector::Histogram::findCoverageIndex(double surfaceToCover, int defaultValue)
|
|
{
|
|
double s = 0;
|
|
for (int i = 0; i < HistogramSize; i++)
|
|
{
|
|
s += cvGetReal1D( fHistogram->bins, i );
|
|
if (s >= surfaceToCover)
|
|
{
|
|
return i;
|
|
}
|
|
}
|
|
return defaultValue;
|
|
};
|
|
|
|
void CvAdaptiveSkinDetector::Histogram::findCurveThresholds(int &x1, int &x2, double percent)
|
|
{
|
|
double sum = 0;
|
|
|
|
for (int i = 0; i < HistogramSize; i++)
|
|
{
|
|
sum += cvGetReal1D( fHistogram->bins, i );
|
|
}
|
|
|
|
x1 = findCoverageIndex(sum * percent, -1);
|
|
x2 = findCoverageIndex(sum * (1-percent), -1);
|
|
|
|
if (x1 == -1)
|
|
x1 = GSD_HUE_LT;
|
|
else
|
|
x1 += GSD_HUE_LT;
|
|
|
|
if (x2 == -1)
|
|
x2 = GSD_HUE_UT;
|
|
else
|
|
x2 += GSD_HUE_LT;
|
|
};
|
|
|
|
void CvAdaptiveSkinDetector::Histogram::mergeWith(CvAdaptiveSkinDetector::Histogram *source, double weight)
|
|
{
|
|
float myweight = (float)(1-weight);
|
|
float maxVal1 = 0, maxVal2 = 0, *f1, *f2, ff1, ff2;
|
|
|
|
cvGetMinMaxHistValue(source->fHistogram, NULL, &maxVal2);
|
|
|
|
if (maxVal2 > 0 )
|
|
{
|
|
cvGetMinMaxHistValue(fHistogram, NULL, &maxVal1);
|
|
if (maxVal1 <= 0)
|
|
{
|
|
for (int i = 0; i < HistogramSize; i++)
|
|
{
|
|
f1 = (float*)cvPtr1D(fHistogram->bins, i);
|
|
f2 = (float*)cvPtr1D(source->fHistogram->bins, i);
|
|
(*f1) = (*f2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < HistogramSize; i++)
|
|
{
|
|
f1 = (float*)cvPtr1D(fHistogram->bins, i);
|
|
f2 = (float*)cvPtr1D(source->fHistogram->bins, i);
|
|
|
|
ff1 = ((*f1)/maxVal1)*myweight;
|
|
if (ff1 < 0)
|
|
ff1 = -ff1;
|
|
|
|
ff2 = (float)(((*f2)/maxVal2)*weight);
|
|
if (ff2 < 0)
|
|
ff2 = -ff2;
|
|
|
|
(*f1) = (ff1 + ff2);
|
|
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
|