417 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			417 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                          License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | |
| // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | |
| // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef __OPENCV_CALIB3D_HPP__
 | |
| #define __OPENCV_CALIB3D_HPP__
 | |
| 
 | |
| #include "opencv2/core.hpp"
 | |
| #include "opencv2/features2d.hpp"
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
| 
 | |
| //! type of the robust estimation algorithm
 | |
| enum { LMEDS  = 4, //!< least-median algorithm
 | |
|        RANSAC = 8  //!< RANSAC algorithm
 | |
|      };
 | |
| 
 | |
| enum { ITERATIVE = 0,
 | |
|        EPNP      = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation"
 | |
|        P3P       = 2  // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem"
 | |
|      };
 | |
| 
 | |
| enum { CALIB_CB_ADAPTIVE_THRESH = 1,
 | |
|        CALIB_CB_NORMALIZE_IMAGE = 2,
 | |
|        CALIB_CB_FILTER_QUADS    = 4,
 | |
|        CALIB_CB_FAST_CHECK      = 8
 | |
|      };
 | |
| 
 | |
| enum { CALIB_CB_SYMMETRIC_GRID  = 1,
 | |
|        CALIB_CB_ASYMMETRIC_GRID = 2,
 | |
|        CALIB_CB_CLUSTERING      = 4
 | |
|      };
 | |
| 
 | |
| enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
 | |
|        CALIB_FIX_ASPECT_RATIO    = 0x00002,
 | |
|        CALIB_FIX_PRINCIPAL_POINT = 0x00004,
 | |
|        CALIB_ZERO_TANGENT_DIST   = 0x00008,
 | |
|        CALIB_FIX_FOCAL_LENGTH    = 0x00010,
 | |
|        CALIB_FIX_K1              = 0x00020,
 | |
|        CALIB_FIX_K2              = 0x00040,
 | |
|        CALIB_FIX_K3              = 0x00080,
 | |
|        CALIB_FIX_K4              = 0x00800,
 | |
|        CALIB_FIX_K5              = 0x01000,
 | |
|        CALIB_FIX_K6              = 0x02000,
 | |
|        CALIB_RATIONAL_MODEL      = 0x04000,
 | |
|        CALIB_THIN_PRISM_MODEL    = 0x08000,
 | |
|        CALIB_FIX_S1_S2_S3_S4     = 0x10000,
 | |
|        // only for stereo
 | |
|        CALIB_FIX_INTRINSIC       = 0x00100,
 | |
|        CALIB_SAME_FOCAL_LENGTH   = 0x00200,
 | |
|        // for stereo rectification
 | |
|        CALIB_ZERO_DISPARITY      = 0x00400
 | |
|      };
 | |
| 
 | |
| //! the algorithm for finding fundamental matrix
 | |
| enum { FM_7POINT = 1, //!< 7-point algorithm
 | |
|        FM_8POINT = 2, //!< 8-point algorithm
 | |
|        FM_LMEDS  = 4, //!< least-median algorithm
 | |
|        FM_RANSAC = 8  //!< RANSAC algorithm
 | |
|      };
 | |
| 
 | |
| 
 | |
| 
 | |
| //! converts rotation vector to rotation matrix or vice versa using Rodrigues transformation
 | |
| CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
 | |
| 
 | |
| //! computes the best-fit perspective transformation mapping srcPoints to dstPoints.
 | |
| CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
 | |
|                                  int method = 0, double ransacReprojThreshold = 3,
 | |
|                                  OutputArray mask=noArray());
 | |
| 
 | |
| //! variant of findHomography for backward compatibility
 | |
| CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
 | |
|                                OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
 | |
| 
 | |
| //! Computes RQ decomposition of 3x3 matrix
 | |
| CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
 | |
|                                 OutputArray Qx = noArray(),
 | |
|                                 OutputArray Qy = noArray(),
 | |
|                                 OutputArray Qz = noArray());
 | |
| 
 | |
| //! Decomposes the projection matrix into camera matrix and the rotation martix and the translation vector
 | |
| CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
 | |
|                                              OutputArray rotMatrix, OutputArray transVect,
 | |
|                                              OutputArray rotMatrixX = noArray(),
 | |
|                                              OutputArray rotMatrixY = noArray(),
 | |
|                                              OutputArray rotMatrixZ = noArray(),
 | |
|                                              OutputArray eulerAngles =noArray() );
 | |
| 
 | |
| //! computes derivatives of the matrix product w.r.t each of the multiplied matrix coefficients
 | |
| CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
 | |
| 
 | |
| //! composes 2 [R|t] transformations together. Also computes the derivatives of the result w.r.t the arguments
 | |
| CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
 | |
|                              InputArray rvec2, InputArray tvec2,
 | |
|                              OutputArray rvec3, OutputArray tvec3,
 | |
|                              OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
 | |
|                              OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
 | |
|                              OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
 | |
|                              OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
 | |
| 
 | |
| //! projects points from the model coordinate space to the image coordinates. Also computes derivatives of the image coordinates w.r.t the intrinsic and extrinsic camera parameters
 | |
| CV_EXPORTS_W void projectPoints( InputArray objectPoints,
 | |
|                                  InputArray rvec, InputArray tvec,
 | |
|                                  InputArray cameraMatrix, InputArray distCoeffs,
 | |
|                                  OutputArray imagePoints,
 | |
|                                  OutputArray jacobian = noArray(),
 | |
|                                  double aspectRatio = 0 );
 | |
| 
 | |
| //! computes the camera pose from a few 3D points and the corresponding projections. The outliers are not handled.
 | |
| CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
 | |
|                             InputArray cameraMatrix, InputArray distCoeffs,
 | |
|                             OutputArray rvec, OutputArray tvec,
 | |
|                             bool useExtrinsicGuess = false, int flags = ITERATIVE );
 | |
| 
 | |
| //! computes the camera pose from a few 3D points and the corresponding projections. The outliers are possible.
 | |
| CV_EXPORTS_W void solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
 | |
|                                   InputArray cameraMatrix, InputArray distCoeffs,
 | |
|                                   OutputArray rvec, OutputArray tvec,
 | |
|                                   bool useExtrinsicGuess = false, int iterationsCount = 100,
 | |
|                                   float reprojectionError = 8.0, int minInliersCount = 100,
 | |
|                                   OutputArray inliers = noArray(), int flags = ITERATIVE );
 | |
| 
 | |
| //! initializes camera matrix from a few 3D points and the corresponding projections.
 | |
| CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
 | |
|                                      InputArrayOfArrays imagePoints,
 | |
|                                      Size imageSize, double aspectRatio = 1.0 );
 | |
| 
 | |
| //! finds checkerboard pattern of the specified size in the image
 | |
| CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
 | |
|                                          int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
 | |
| 
 | |
| //! finds subpixel-accurate positions of the chessboard corners
 | |
| CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
 | |
| 
 | |
| //! draws the checkerboard pattern (found or partly found) in the image
 | |
| CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
 | |
|                                          InputArray corners, bool patternWasFound );
 | |
| 
 | |
| //! finds circles' grid pattern of the specified size in the image
 | |
| CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
 | |
|                                    OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
 | |
|                                    const Ptr<FeatureDetector> &blobDetector = makePtr<SimpleBlobDetector>());
 | |
| 
 | |
| //! finds intrinsic and extrinsic camera parameters from several fews of a known calibration pattern.
 | |
| CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
 | |
|                                      InputArrayOfArrays imagePoints, Size imageSize,
 | |
|                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
 | |
|                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
 | |
|                                      int flags = 0, TermCriteria criteria = TermCriteria(
 | |
|                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
 | |
| 
 | |
| //! computes several useful camera characteristics from the camera matrix, camera frame resolution and the physical sensor size.
 | |
| CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
 | |
|                                            double apertureWidth, double apertureHeight,
 | |
|                                            CV_OUT double& fovx, CV_OUT double& fovy,
 | |
|                                            CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
 | |
|                                            CV_OUT double& aspectRatio );
 | |
| 
 | |
| //! finds intrinsic and extrinsic parameters of a stereo camera
 | |
| CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
 | |
|                                      InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
 | |
|                                      InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
 | |
|                                      InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
 | |
|                                      Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
 | |
|                                      int flags = CALIB_FIX_INTRINSIC,
 | |
|                                      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
 | |
| 
 | |
| 
 | |
| //! computes the rectification transformation for a stereo camera from its intrinsic and extrinsic parameters
 | |
| CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
 | |
|                                  InputArray cameraMatrix2, InputArray distCoeffs2,
 | |
|                                  Size imageSize, InputArray R, InputArray T,
 | |
|                                  OutputArray R1, OutputArray R2,
 | |
|                                  OutputArray P1, OutputArray P2,
 | |
|                                  OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
 | |
|                                  double alpha = -1, Size newImageSize = Size(),
 | |
|                                  CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
 | |
| 
 | |
| //! computes the rectification transformation for an uncalibrated stereo camera (zero distortion is assumed)
 | |
| CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
 | |
|                                              InputArray F, Size imgSize,
 | |
|                                              OutputArray H1, OutputArray H2,
 | |
|                                              double threshold = 5 );
 | |
| 
 | |
| //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
 | |
| CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
 | |
|                                       InputArray cameraMatrix2, InputArray distCoeffs2,
 | |
|                                       InputArray cameraMatrix3, InputArray distCoeffs3,
 | |
|                                       InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
 | |
|                                       Size imageSize, InputArray R12, InputArray T12,
 | |
|                                       InputArray R13, InputArray T13,
 | |
|                                       OutputArray R1, OutputArray R2, OutputArray R3,
 | |
|                                       OutputArray P1, OutputArray P2, OutputArray P3,
 | |
|                                       OutputArray Q, double alpha, Size newImgSize,
 | |
|                                       CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
 | |
| 
 | |
| //! returns the optimal new camera matrix
 | |
| CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
 | |
|                                             Size imageSize, double alpha, Size newImgSize = Size(),
 | |
|                                             CV_OUT Rect* validPixROI = 0,
 | |
|                                             bool centerPrincipalPoint = false);
 | |
| 
 | |
| //! converts point coordinates from normal pixel coordinates to homogeneous coordinates ((x,y)->(x,y,1))
 | |
| CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
 | |
| 
 | |
| //! converts point coordinates from homogeneous to normal pixel coordinates ((x,y,z)->(x/z, y/z))
 | |
| CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
 | |
| 
 | |
| //! for backward compatibility
 | |
| CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
 | |
| 
 | |
| //! finds fundamental matrix from a set of corresponding 2D points
 | |
| CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
 | |
|                                      int method = FM_RANSAC,
 | |
|                                      double param1 = 3., double param2 = 0.99,
 | |
|                                      OutputArray mask = noArray() );
 | |
| 
 | |
| //! variant of findFundamentalMat for backward compatibility
 | |
| CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
 | |
|                                    OutputArray mask, int method = FM_RANSAC,
 | |
|                                    double param1 = 3., double param2 = 0.99 );
 | |
| 
 | |
| //! finds essential matrix from a set of corresponding 2D points using five-point algorithm
 | |
| CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
 | |
|                                  double focal = 1.0, Point2d pp = Point2d(0, 0),
 | |
|                                  int method = RANSAC, double prob = 0.999,
 | |
|                                  double threshold = 1.0, OutputArray mask = noArray() );
 | |
| 
 | |
| //! decompose essential matrix to possible rotation matrix and one translation vector
 | |
| CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
 | |
| 
 | |
| //! recover relative camera pose from a set of corresponding 2D points
 | |
| CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
 | |
|                             OutputArray R, OutputArray t,
 | |
|                             double focal = 1.0, Point2d pp = Point2d(0, 0),
 | |
|                             InputOutputArray mask = noArray() );
 | |
| 
 | |
| 
 | |
| //! finds coordinates of epipolar lines corresponding the specified points
 | |
| CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
 | |
|                                              InputArray F, OutputArray lines );
 | |
| 
 | |
| CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
 | |
|                                      InputArray projPoints1, InputArray projPoints2,
 | |
|                                      OutputArray points4D );
 | |
| 
 | |
| CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
 | |
|                                   OutputArray newPoints1, OutputArray newPoints2 );
 | |
| 
 | |
| //! filters off speckles (small regions of incorrectly computed disparity)
 | |
| CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
 | |
|                                   int maxSpeckleSize, double maxDiff,
 | |
|                                   InputOutputArray buf = noArray() );
 | |
| 
 | |
| //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
 | |
| CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
 | |
|                                         int minDisparity, int numberOfDisparities,
 | |
|                                         int SADWindowSize );
 | |
| 
 | |
| //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
 | |
| CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
 | |
|                                      int minDisparity, int numberOfDisparities,
 | |
|                                      int disp12MaxDisp = 1 );
 | |
| 
 | |
| //! reprojects disparity image to 3D: (x,y,d)->(X,Y,Z) using the matrix Q returned by cv::stereoRectify
 | |
| CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
 | |
|                                       OutputArray _3dImage, InputArray Q,
 | |
|                                       bool handleMissingValues = false,
 | |
|                                       int ddepth = -1 );
 | |
| 
 | |
| CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
 | |
|                                    OutputArray out, OutputArray inliers,
 | |
|                                    double ransacThreshold = 3, double confidence = 0.99);
 | |
| 
 | |
| 
 | |
| 
 | |
| class CV_EXPORTS_W StereoMatcher : public Algorithm
 | |
| {
 | |
| public:
 | |
|     enum { DISP_SHIFT = 4,
 | |
|            DISP_SCALE = (1 << DISP_SHIFT)
 | |
|          };
 | |
| 
 | |
|     CV_WRAP virtual void compute( InputArray left, InputArray right,
 | |
|                                   OutputArray disparity ) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getMinDisparity() const = 0;
 | |
|     CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getNumDisparities() const = 0;
 | |
|     CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getBlockSize() const = 0;
 | |
|     CV_WRAP virtual void setBlockSize(int blockSize) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getSpeckleWindowSize() const = 0;
 | |
|     CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getSpeckleRange() const = 0;
 | |
|     CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getDisp12MaxDiff() const = 0;
 | |
|     CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| class CV_EXPORTS_W StereoBM : public StereoMatcher
 | |
| {
 | |
| public:
 | |
|     enum { PREFILTER_NORMALIZED_RESPONSE = 0,
 | |
|            PREFILTER_XSOBEL              = 1
 | |
|          };
 | |
| 
 | |
|     CV_WRAP virtual int getPreFilterType() const = 0;
 | |
|     CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getPreFilterSize() const = 0;
 | |
|     CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getPreFilterCap() const = 0;
 | |
|     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getTextureThreshold() const = 0;
 | |
|     CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getUniquenessRatio() const = 0;
 | |
|     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getSmallerBlockSize() const = 0;
 | |
|     CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
 | |
| 
 | |
|     CV_WRAP virtual Rect getROI1() const = 0;
 | |
|     CV_WRAP virtual void setROI1(Rect roi1) = 0;
 | |
| 
 | |
|     CV_WRAP virtual Rect getROI2() const = 0;
 | |
|     CV_WRAP virtual void setROI2(Rect roi2) = 0;
 | |
| };
 | |
| 
 | |
| CV_EXPORTS_W Ptr<StereoBM> createStereoBM(int numDisparities = 0, int blockSize = 21);
 | |
| 
 | |
| 
 | |
| class CV_EXPORTS_W StereoSGBM : public StereoMatcher
 | |
| {
 | |
| public:
 | |
|     enum { MODE_SGBM = 0,
 | |
|            MODE_HH   = 1
 | |
|          };
 | |
| 
 | |
|     CV_WRAP virtual int getPreFilterCap() const = 0;
 | |
|     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getUniquenessRatio() const = 0;
 | |
|     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getP1() const = 0;
 | |
|     CV_WRAP virtual void setP1(int P1) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getP2() const = 0;
 | |
|     CV_WRAP virtual void setP2(int P2) = 0;
 | |
| 
 | |
|     CV_WRAP virtual int getMode() const = 0;
 | |
|     CV_WRAP virtual void setMode(int mode) = 0;
 | |
| };
 | |
| 
 | |
| 
 | |
| CV_EXPORTS_W Ptr<StereoSGBM> createStereoSGBM(int minDisparity, int numDisparities, int blockSize,
 | |
|                                             int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
 | |
|                                             int preFilterCap = 0, int uniquenessRatio = 0,
 | |
|                                             int speckleWindowSize = 0, int speckleRange = 0,
 | |
|                                             int mode = StereoSGBM::MODE_SGBM);
 | |
| 
 | |
| } // cv
 | |
| 
 | |
| #endif
 | 
