opencv/modules/ocl/perf/perf_precomp.hpp
2013-08-21 18:59:26 +04:00

514 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PERF_PRECOMP_HPP__
#define __OPENCV_PERF_PRECOMP_HPP__
#include <iomanip>
#include <stdexcept>
#include <string>
#include <iostream>
#include <cstdio>
#include <vector>
#include <numeric>
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/video/video.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/features2d/features2d.hpp"
#include "opencv2/ocl/ocl.hpp"
#include "opencv2/ts/ts.hpp"
#include "opencv2/ts/ts_perf.hpp"
#include "opencv2/ts/ts_gtest.h"
#define Min_Size 1000
#define Max_Size 4000
#define Multiple 2
#define TAB " "
using namespace std;
using namespace cv;
void gen(Mat &mat, int rows, int cols, int type, Scalar low, Scalar high);
void gen(Mat &mat, int rows, int cols, int type, int low, int high, int n);
string abspath(const string &relpath);
int CV_CDECL cvErrorCallback(int, const char *, const char *, const char *, int, void *);
typedef struct
{
short x;
short y;
} COOR;
COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep,
cv::Size size, int sp, int sr, int maxIter, float eps, int *tab);
void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi,
int sp, int sr, cv::TermCriteria crit);
template<class T1, class T2>
int ExpectedEQ(T1 expected, T2 actual)
{
if(expected == actual)
return 1;
return 0;
}
template<class T1>
int EeceptDoubleEQ(T1 expected, T1 actual)
{
testing::internal::Double lhs(expected);
testing::internal::Double rhs(actual);
if (lhs.AlmostEquals(rhs))
{
return 1;
}
return 0;
}
template<class T>
int AssertEQ(T expected, T actual)
{
if(expected == actual)
{
return 1;
}
return 0;
}
int ExceptDoubleNear(double val1, double val2, double abs_error);
bool match_rect(cv::Rect r1, cv::Rect r2, int threshold);
double checkNorm(const cv::Mat &m);
double checkNorm(const cv::Mat &m1, const cv::Mat &m2);
double checkSimilarity(const cv::Mat &m1, const cv::Mat &m2);
int ExpectedMatNear(cv::Mat dst, cv::Mat cpu_dst, double eps);
int ExceptedMatSimilar(cv::Mat dst, cv::Mat cpu_dst, double eps);
class Runnable
{
public:
explicit Runnable(const std::string &runname): name_(runname) {}
virtual ~Runnable() {}
const std::string &name() const
{
return name_;
}
virtual void run() = 0;
private:
std::string name_;
};
class TestSystem
{
public:
static TestSystem &instance()
{
static TestSystem me;
return me;
}
void setWorkingDir(const std::string &val)
{
working_dir_ = val;
}
const std::string &workingDir() const
{
return working_dir_;
}
void setTestFilter(const std::string &val)
{
test_filter_ = val;
}
const std::string &testFilter() const
{
return test_filter_;
}
void setNumIters(int num_iters)
{
num_iters_ = num_iters;
}
void setGPUWarmupIters(int num_iters)
{
gpu_warmup_iters_ = num_iters;
}
void setCPUIters(int num_iters)
{
cpu_num_iters_ = num_iters;
}
void setTopThreshold(double top)
{
top_ = top;
}
void setBottomThreshold(double bottom)
{
bottom_ = bottom;
}
void addInit(Runnable *init)
{
inits_.push_back(init);
}
void addTest(Runnable *test)
{
tests_.push_back(test);
}
void run();
// It's public because OpenCV callback uses it
void printError(const std::string &msg);
std::stringstream &startNewSubtest()
{
finishCurrentSubtest();
return cur_subtest_description_;
}
bool stop() const
{
return cur_iter_idx_ >= num_iters_;
}
bool cpu_stop() const
{
return cur_iter_idx_ >= cpu_num_iters_;
}
int get_cur_iter_idx()
{
return cur_iter_idx_;
}
int get_cpu_num_iters()
{
return cpu_num_iters_;
}
bool warmupStop()
{
return cur_warmup_idx_++ >= gpu_warmup_iters_;
}
void warmupComplete()
{
cur_warmup_idx_ = 0;
}
void cpuOn()
{
cpu_started_ = cv::getTickCount();
}
void cpuOff()
{
int64 delta = cv::getTickCount() - cpu_started_;
cpu_times_.push_back(delta);
++cur_iter_idx_;
}
void cpuComplete()
{
cpu_elapsed_ += meanTime(cpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
void gpuOn()
{
gpu_started_ = cv::getTickCount();
}
void gpuOff()
{
int64 delta = cv::getTickCount() - gpu_started_;
gpu_times_.push_back(delta);
++cur_iter_idx_;
}
void gpuComplete()
{
gpu_elapsed_ += meanTime(gpu_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
void gpufullOn()
{
gpu_full_started_ = cv::getTickCount();
}
void gpufullOff()
{
int64 delta = cv::getTickCount() - gpu_full_started_;
gpu_full_times_.push_back(delta);
++cur_iter_idx_;
}
void gpufullComplete()
{
gpu_full_elapsed_ += meanTime(gpu_full_times_);
cur_subtest_is_empty_ = false;
cur_iter_idx_ = 0;
}
bool isListMode() const
{
return is_list_mode_;
}
void setListMode(bool value)
{
is_list_mode_ = value;
}
void setRecordName(const std::string &name)
{
recordname_ = name;
}
void setCurrentTest(const std::string &name)
{
itname_ = name;
itname_changed_ = true;
}
void setAccurate(int accurate, double diff)
{
is_accurate_ = accurate;
accurate_diff_ = diff;
}
void ExpectMatsNear(vector<Mat>& dst, vector<Mat>& cpu_dst, vector<double>& eps)
{
assert(dst.size() == cpu_dst.size());
assert(cpu_dst.size() == eps.size());
is_accurate_ = 1;
for(size_t i=0; i<dst.size(); i++)
{
double cur_diff = checkNorm(dst[i], cpu_dst[i]);
accurate_diff_ = max(accurate_diff_, cur_diff);
if(cur_diff > eps[i])
is_accurate_ = 0;
}
}
void ExpectedMatNear(cv::Mat& dst, cv::Mat& cpu_dst, double eps)
{
assert(dst.type() == cpu_dst.type());
assert(dst.size() == cpu_dst.size());
accurate_diff_ = checkNorm(dst, cpu_dst);
if(accurate_diff_ <= eps)
is_accurate_ = 1;
else
is_accurate_ = 0;
}
void ExceptedMatSimilar(cv::Mat& dst, cv::Mat& cpu_dst, double eps)
{
assert(dst.type() == cpu_dst.type());
assert(dst.size() == cpu_dst.size());
accurate_diff_ = checkSimilarity(cpu_dst, dst);
if(accurate_diff_ <= eps)
is_accurate_ = 1;
else
is_accurate_ = 0;
}
std::stringstream &getCurSubtestDescription()
{
return cur_subtest_description_;
}
private:
TestSystem():
cur_subtest_is_empty_(true), cpu_elapsed_(0),
gpu_elapsed_(0), gpu_full_elapsed_(0), speedup_total_(0.0),
num_subtests_called_(0),
speedup_faster_count_(0), speedup_slower_count_(0), speedup_equal_count_(0),
speedup_full_faster_count_(0), speedup_full_slower_count_(0), speedup_full_equal_count_(0), is_list_mode_(false),
num_iters_(10), cpu_num_iters_(2),
gpu_warmup_iters_(1), cur_iter_idx_(0), cur_warmup_idx_(0),
record_(0), recordname_("performance"), itname_changed_(true),
is_accurate_(-1), accurate_diff_(0.)
{
cpu_times_.reserve(num_iters_);
gpu_times_.reserve(num_iters_);
gpu_full_times_.reserve(num_iters_);
}
void finishCurrentSubtest();
void resetCurrentSubtest()
{
cpu_elapsed_ = 0;
gpu_elapsed_ = 0;
gpu_full_elapsed_ = 0;
cur_subtest_description_.str("");
cur_subtest_is_empty_ = true;
cur_iter_idx_ = 0;
cur_warmup_idx_ = 0;
cpu_times_.clear();
gpu_times_.clear();
gpu_full_times_.clear();
is_accurate_ = -1;
accurate_diff_ = 0.;
}
double meanTime(const std::vector<int64> &samples);
void printHeading();
void printSummary();
void printMetrics(int is_accurate, double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f, double speedup = 0.0f, double fullspeedup = 0.0f);
void writeHeading();
void writeSummary();
void writeMetrics(double cpu_time, double gpu_time = 0.0f, double gpu_full_time = 0.0f,
double speedup = 0.0f, double fullspeedup = 0.0f,
double gpu_min = 0.0f, double gpu_max = 0.0f, double std_dev = 0.0f);
std::string working_dir_;
std::string test_filter_;
std::vector<Runnable *> inits_;
std::vector<Runnable *> tests_;
std::stringstream cur_subtest_description_;
bool cur_subtest_is_empty_;
int64 cpu_started_;
int64 gpu_started_;
int64 gpu_full_started_;
double cpu_elapsed_;
double gpu_elapsed_;
double gpu_full_elapsed_;
double speedup_total_;
double speedup_full_total_;
int num_subtests_called_;
int speedup_faster_count_;
int speedup_slower_count_;
int speedup_equal_count_;
int speedup_full_faster_count_;
int speedup_full_slower_count_;
int speedup_full_equal_count_;
bool is_list_mode_;
double top_;
double bottom_;
int num_iters_;
int cpu_num_iters_; //there's no need to set cpu running same times with gpu
int gpu_warmup_iters_; //gpu warm up times, default is 1
int cur_iter_idx_;
int cur_warmup_idx_; //current gpu warm up times
std::vector<int64> cpu_times_;
std::vector<int64> gpu_times_;
std::vector<int64> gpu_full_times_;
FILE *record_;
std::string recordname_;
std::string itname_;
bool itname_changed_;
int is_accurate_;
double accurate_diff_;
};
#define GLOBAL_INIT(name) \
struct name##_init: Runnable { \
name##_init(): Runnable(#name) { \
TestSystem::instance().addInit(this); \
} \
void run(); \
} name##_init_instance; \
void name##_init::run()
#define PERFTEST(name) \
struct name##_test: Runnable { \
name##_test(): Runnable(#name) { \
TestSystem::instance().addTest(this); \
} \
void run(); \
} name##_test_instance; \
void name##_test::run()
#define SUBTEST TestSystem::instance().startNewSubtest()
#define CPU_ON \
while (!TestSystem::instance().cpu_stop()) { \
TestSystem::instance().cpuOn()
#define CPU_OFF \
TestSystem::instance().cpuOff(); \
} TestSystem::instance().cpuComplete()
#define GPU_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpuOn()
#define GPU_OFF \
ocl::finish();\
TestSystem::instance().gpuOff(); \
} TestSystem::instance().gpuComplete()
#define GPU_FULL_ON \
while (!TestSystem::instance().stop()) { \
TestSystem::instance().gpufullOn()
#define GPU_FULL_OFF \
TestSystem::instance().gpufullOff(); \
} TestSystem::instance().gpufullComplete()
#define WARMUP_ON \
while (!TestSystem::instance().warmupStop()) {
#define WARMUP_OFF \
ocl::finish();\
} TestSystem::instance().warmupComplete()
#endif