359 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			359 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                           License Agreement
 | |
| //                For Open Source Computer Vision Library
 | |
| //
 | |
| // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of the copyright holders may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the OpenCV Foundation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| #include "precomp.hpp"
 | |
| #include <climits>
 | |
| #include <algorithm>
 | |
| #include <cstdarg>
 | |
| #include <debug.hpp>
 | |
| 
 | |
| namespace cv{namespace optim{
 | |
| using std::vector;
 | |
| 
 | |
| #ifdef ALEX_DEBUG
 | |
| static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){
 | |
|     printf("\tprint simplex state\n");
 | |
| 
 | |
|     printf("v=%g\n",v);
 | |
| 
 | |
|     printf("here c goes\n");
 | |
|     print_matrix(c);
 | |
| 
 | |
|     printf("non-basic: ");
 | |
|     print(Mat(N));
 | |
|     printf("\n");
 | |
| 
 | |
|     printf("here b goes\n");
 | |
|     print_matrix(b);
 | |
|     printf("basic: ");
 | |
| 
 | |
|     print(Mat(B));
 | |
|     printf("\n");
 | |
| }
 | |
| #else
 | |
| #define print_simplex_state(c,b,v,N,B)
 | |
| #endif
 | |
| 
 | |
| /**Due to technical considerations, the format of input b and c is somewhat special:
 | |
|  *both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
 | |
|  by this procedure - it should not be cleaned before the call to procedure and may contain mess after
 | |
|  it also initializes N and B and does not make any assumptions about their init values
 | |
|  * @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
 | |
| */
 | |
| static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
 | |
| static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,int leaving_index,
 | |
|         int entering_index,vector<unsigned int>& indexToRow);
 | |
| /**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
 | |
|  */
 | |
| static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
 | |
| static void swap_columns(Mat_<double>& A,int col1,int col2);
 | |
| #define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;}
 | |
| 
 | |
| //return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
 | |
| int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
 | |
|     dprintf(("call to solveLP\n"));
 | |
| 
 | |
|     //sanity check (size, type, no. of channels)
 | |
|     CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1);
 | |
|     CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1);
 | |
|     CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))||
 | |
|             (Func.cols==1 && (Constr.cols-Func.rows==1)));
 | |
| 
 | |
|     //copy arguments for we will shall modify them
 | |
|     Mat_<double> bigC=Mat_<double>(1,(Func.rows==1?Func.cols:Func.rows)+1),
 | |
|         bigB=Mat_<double>(Constr.rows,Constr.cols+1);
 | |
|     if(Func.rows==1){
 | |
|         Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
 | |
|     }else{
 | |
|         Mat FuncT=Func.t();
 | |
|         FuncT.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
 | |
|     }
 | |
|     Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1);
 | |
|     double v=0;
 | |
|     vector<int> N,B;
 | |
|     vector<unsigned int> indexToRow;
 | |
| 
 | |
|     if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){
 | |
|         return SOLVELP_UNFEASIBLE;
 | |
|     }
 | |
|     Mat_<double> c=bigC.colRange(1,bigC.cols),
 | |
|         b=bigB.colRange(1,bigB.cols);
 | |
| 
 | |
|     int res=0;
 | |
|     if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){
 | |
|         return SOLVELP_UNBOUNDED;
 | |
|     }
 | |
| 
 | |
|     //return the optimal solution
 | |
|     z.create(c.cols,1,CV_64FC1);
 | |
|     MatIterator_<double> it=z.begin<double>();
 | |
|     unsigned int nsize = (unsigned int)N.size();
 | |
|     for(int i=1;i<=c.cols;i++,it++){
 | |
|         if(indexToRow[i]<nsize){
 | |
|             *it=0;
 | |
|         }else{
 | |
|             *it=b.at<double>(indexToRow[i]-nsize,b.cols-1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
 | |
|     N.resize(c.cols);
 | |
|     N[0]=0;
 | |
|     for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
 | |
|         *it=it[-1]+1;
 | |
|     }
 | |
|     B.resize(b.rows);
 | |
|     B[0]=(int)N.size();
 | |
|     for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
 | |
|         *it=it[-1]+1;
 | |
|     }
 | |
|     indexToRow.resize(c.cols+b.rows);
 | |
|     indexToRow[0]=0;
 | |
|     for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
 | |
|         *it=it[-1]+1;
 | |
|     }
 | |
|     v=0;
 | |
| 
 | |
|     int k=0;
 | |
|     {
 | |
|         double min=DBL_MAX;
 | |
|         for(int i=0;i<b.rows;i++){
 | |
|             if(b(i,b.cols-1)<min){
 | |
|                 min=b(i,b.cols-1);
 | |
|                 k=i;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(b(k,b.cols-1)>=0){
 | |
|         N.erase(N.begin());
 | |
|         for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
 | |
|             --(*it);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     Mat_<double> old_c=c.clone();
 | |
|     c=0;
 | |
|     c(0,0)=-1;
 | |
|     for(int i=0;i<b.rows;i++){
 | |
|         b(i,0)=-1;
 | |
|     }
 | |
| 
 | |
|     print_simplex_state(c,b,v,N,B);
 | |
| 
 | |
|     dprintf(("\tWE MAKE PIVOT\n"));
 | |
|     pivot(c,b,v,N,B,k,0,indexToRow);
 | |
| 
 | |
|     print_simplex_state(c,b,v,N,B);
 | |
| 
 | |
|     inner_simplex(c,b,v,N,B,indexToRow);
 | |
| 
 | |
|     dprintf(("\tAFTER INNER_SIMPLEX\n"));
 | |
|     print_simplex_state(c,b,v,N,B);
 | |
| 
 | |
|     unsigned int nsize = (unsigned int)N.size();
 | |
|     if(indexToRow[0]>=nsize){
 | |
|         int iterator_offset=indexToRow[0]-nsize;
 | |
|         if(b(iterator_offset,b.cols-1)>0){
 | |
|             return SOLVELP_UNFEASIBLE;
 | |
|         }
 | |
|         pivot(c,b,v,N,B,iterator_offset,0,indexToRow);
 | |
|     }
 | |
| 
 | |
|     vector<int>::iterator iterator;
 | |
|     {
 | |
|         int iterator_offset=indexToRow[0];
 | |
|         iterator=N.begin()+iterator_offset;
 | |
|         std::iter_swap(iterator,N.begin());
 | |
|         SWAP(int,indexToRow[*iterator],indexToRow[0]);
 | |
|         swap_columns(c,iterator_offset,0);
 | |
|         swap_columns(b,iterator_offset,0);
 | |
|     }
 | |
| 
 | |
|     dprintf(("after swaps\n"));
 | |
|     print_simplex_state(c,b,v,N,B);
 | |
| 
 | |
|     //start from 1, because we ignore x_0
 | |
|     c=0;
 | |
|     v=0;
 | |
|     for(int I=1;I<old_c.cols;I++){
 | |
|         if(indexToRow[I]<nsize){
 | |
|             dprintf(("I=%d from nonbasic\n",I));
 | |
|             int iterator_offset=indexToRow[I];
 | |
|             c(0,iterator_offset)+=old_c(0,I);
 | |
|             print_matrix(c);
 | |
|         }else{
 | |
|             dprintf(("I=%d from basic\n",I));
 | |
|             int iterator_offset=indexToRow[I]-nsize;
 | |
|             c-=old_c(0,I)*b.row(iterator_offset).colRange(0,b.cols-1);
 | |
|             v+=old_c(0,I)*b(iterator_offset,b.cols-1);
 | |
|             print_matrix(c);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     dprintf(("after restore\n"));
 | |
|     print_simplex_state(c,b,v,N,B);
 | |
| 
 | |
|     N.erase(N.begin());
 | |
|     for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
 | |
|         --(*it);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
 | |
|     int count=0;
 | |
|     for(;;){
 | |
|         dprintf(("iteration #%d\n",count));
 | |
|         count++;
 | |
| 
 | |
|         static MatIterator_<double> pos_ptr;
 | |
|         int e=-1,pos_ctr=0,min_var=INT_MAX;
 | |
|         bool all_nonzero=true;
 | |
|         for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
 | |
|             if(*pos_ptr==0){
 | |
|                 all_nonzero=false;
 | |
|             }
 | |
|             if(*pos_ptr>0){
 | |
|                 if(N[pos_ctr]<min_var){
 | |
|                     e=pos_ctr;
 | |
|                     min_var=N[pos_ctr];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if(e==-1){
 | |
|             dprintf(("hello from e==-1\n"));
 | |
|             print_matrix(c);
 | |
|             if(all_nonzero==true){
 | |
|                 return SOLVELP_SINGLE;
 | |
|             }else{
 | |
|                 return SOLVELP_MULTI;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         int l=-1;
 | |
|         min_var=INT_MAX;
 | |
|         double min=DBL_MAX;
 | |
|         int row_it=0;
 | |
|         MatIterator_<double> min_row_ptr=b.begin();
 | |
|         for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){
 | |
|             double myite=0;
 | |
|             //check constraints, select the tightest one, reinforcing Bland's rule
 | |
|             if((myite=it[e])>0){
 | |
|                 double val=it[b.cols-1]/myite;
 | |
|                 if(val<min || (val==min && B[row_it]<min_var)){
 | |
|                     min_var=B[row_it];
 | |
|                     min_row_ptr=it;
 | |
|                     min=val;
 | |
|                     l=row_it;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if(l==-1){
 | |
|             return SOLVELP_UNBOUNDED;
 | |
|         }
 | |
|         dprintf(("the tightest constraint is in row %d with %g\n",l,min));
 | |
| 
 | |
|         pivot(c,b,v,N,B,l,e,indexToRow);
 | |
| 
 | |
|         dprintf(("objective, v=%g\n",v));
 | |
|         print_matrix(c);
 | |
|         dprintf(("constraints\n"));
 | |
|         print_matrix(b);
 | |
|         dprintf(("non-basic: "));
 | |
|         print_matrix(Mat(N));
 | |
|         dprintf(("basic: "));
 | |
|         print_matrix(Mat(B));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,
 | |
|         int leaving_index,int entering_index,vector<unsigned int>& indexToRow){
 | |
|     double Coef=b(leaving_index,entering_index);
 | |
|     for(int i=0;i<b.cols;i++){
 | |
|         if(i==entering_index){
 | |
|             b(leaving_index,i)=1/Coef;
 | |
|         }else{
 | |
|             b(leaving_index,i)/=Coef;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(int i=0;i<b.rows;i++){
 | |
|         if(i!=leaving_index){
 | |
|             double coef=b(i,entering_index);
 | |
|             for(int j=0;j<b.cols;j++){
 | |
|                 if(j==entering_index){
 | |
|                     b(i,j)=-coef*b(leaving_index,j);
 | |
|                 }else{
 | |
|                     b(i,j)-=(coef*b(leaving_index,j));
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     //objective function
 | |
|     Coef=c(0,entering_index);
 | |
|     for(int i=0;i<(b.cols-1);i++){
 | |
|         if(i==entering_index){
 | |
|             c(0,i)=-Coef*b(leaving_index,i);
 | |
|         }else{
 | |
|             c(0,i)-=Coef*b(leaving_index,i);
 | |
|         }
 | |
|     }
 | |
|     dprintf(("v was %g\n",v));
 | |
|     v+=Coef*b(leaving_index,b.cols-1);
 | |
| 
 | |
|     SWAP(int,N[entering_index],B[leaving_index]);
 | |
|     SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]);
 | |
| }
 | |
| 
 | |
| static inline void swap_columns(Mat_<double>& A,int col1,int col2){
 | |
|     for(int i=0;i<A.rows;i++){
 | |
|         double tmp=A(i,col1);
 | |
|         A(i,col1)=A(i,col2);
 | |
|         A(i,col2)=tmp;
 | |
|     }
 | |
| }
 | |
| }}
 | 
