opencv/modules/python/src2/cv2.cpp
2015-11-02 11:36:03 +00:00

1402 lines
36 KiB
C++

#if defined(_MSC_VER) && (_MSC_VER >= 1800)
// eliminating duplicated round() declaration
#define HAVE_ROUND 1
#endif
#include <Python.h>
#define MODULESTR "cv2"
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/ndarrayobject.h>
#include "pyopencv_generated_include.h"
#include "opencv2/core/types_c.h"
#include "opencv2/opencv_modules.hpp"
#include "pycompat.hpp"
static PyObject* opencv_error = 0;
static int failmsg(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
struct ArgInfo
{
const char * name;
bool outputarg;
// more fields may be added if necessary
ArgInfo(const char * name_, bool outputarg_)
: name(name_)
, outputarg(outputarg_) {}
// to match with older pyopencv_to function signature
operator const char *() const { return name; }
};
class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};
class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};
#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
PyErr_SetString(opencv_error, e.what()); \
return 0; \
}
using namespace cv;
typedef std::vector<uchar> vector_uchar;
typedef std::vector<char> vector_char;
typedef std::vector<int> vector_int;
typedef std::vector<float> vector_float;
typedef std::vector<double> vector_double;
typedef std::vector<Point> vector_Point;
typedef std::vector<Point2f> vector_Point2f;
typedef std::vector<Vec2f> vector_Vec2f;
typedef std::vector<Vec3f> vector_Vec3f;
typedef std::vector<Vec4f> vector_Vec4f;
typedef std::vector<Vec6f> vector_Vec6f;
typedef std::vector<Vec4i> vector_Vec4i;
typedef std::vector<Rect> vector_Rect;
typedef std::vector<Rect2d> vector_Rect2d;
typedef std::vector<KeyPoint> vector_KeyPoint;
typedef std::vector<Mat> vector_Mat;
typedef std::vector<DMatch> vector_DMatch;
typedef std::vector<String> vector_String;
typedef std::vector<Scalar> vector_Scalar;
typedef std::vector<std::vector<char> > vector_vector_char;
typedef std::vector<std::vector<Point> > vector_vector_Point;
typedef std::vector<std::vector<Point2f> > vector_vector_Point2f;
typedef std::vector<std::vector<Point3f> > vector_vector_Point3f;
typedef std::vector<std::vector<DMatch> > vector_vector_DMatch;
#ifdef HAVE_OPENCV_FEATURES2D
typedef SimpleBlobDetector::Params SimpleBlobDetector_Params;
#endif
#ifdef HAVE_OPENCV_FLANN
typedef cvflann::flann_distance_t cvflann_flann_distance_t;
typedef cvflann::flann_algorithm_t cvflann_flann_algorithm_t;
#endif
#ifdef HAVE_OPENCV_STITCHING
typedef Stitcher::Status Status;
#endif
static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
PyErr_SetString(PyExc_TypeError, str);
return 0;
}
class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); }
~NumpyAllocator() {}
UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const
{
UMatData* u = new UMatData(this);
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o);
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
for( int i = 0; i < dims - 1; i++ )
step[i] = (size_t)_strides[i];
step[dims-1] = CV_ELEM_SIZE(type);
u->size = sizes[0]*step[0];
u->userdata = o;
return u;
}
UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const
{
if( data != 0 )
{
CV_Error(Error::StsAssert, "The data should normally be NULL!");
// probably this is safe to do in such extreme case
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags);
}
PyEnsureGIL gil;
int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i, dims = dims0;
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
_sizes[dims++] = cn;
PyObject* o = PyArray_SimpleNew(dims, _sizes, typenum);
if(!o)
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
return allocate(o, dims0, sizes, type, step);
}
bool allocate(UMatData* u, int accessFlags, UMatUsageFlags usageFlags) const
{
return stdAllocator->allocate(u, accessFlags, usageFlags);
}
void deallocate(UMatData* u) const
{
if(!u)
return;
PyEnsureGIL gil;
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if(u->refcount == 0)
{
PyObject* o = (PyObject*)u->userdata;
Py_XDECREF(o);
delete u;
}
}
const MatAllocator* stdAllocator;
};
NumpyAllocator g_numpyAllocator;
template<typename T> static
bool pyopencv_to(PyObject* obj, T& p, const char* name = "<unknown>");
template<typename T> static
PyObject* pyopencv_from(const T& src);
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
// special case, when the convertor needs full ArgInfo structure
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo info)
{
bool allowND = true;
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( PyInt_Check(o) )
{
double v[] = {static_cast<double>(PyInt_AsLong((PyObject*)o)), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyFloat_Check(o) )
{
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyTuple_Check(o) )
{
int i, sz = (int)PyTuple_Size((PyObject*)o);
m = Mat(sz, 1, CV_64F);
for( i = 0; i < sz; i++ )
{
PyObject* oi = PyTuple_GET_ITEM(o, i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s is not a numerical tuple", info.name);
m.release();
return false;
}
}
return true;
}
if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array, neither a scalar", info.name);
return false;
}
PyArrayObject* oarr = (PyArrayObject*) o;
bool needcopy = false, needcast = false;
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
int type = typenum == NPY_UBYTE ? CV_8U :
typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U :
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG )
{
needcopy = needcast = true;
new_typenum = NPY_INT;
type = CV_32S;
}
else
{
failmsg("%s data type = %d is not supported", info.name, typenum);
return false;
}
}
#ifndef CV_MAX_DIM
const int CV_MAX_DIM = 32;
#endif
int ndims = PyArray_NDIM(oarr);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
return false;
}
int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1];
size_t elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(oarr);
const npy_intp* _strides = PyArray_STRIDES(oarr);
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
for( int i = ndims-1; i >= 0 && !needcopy; i-- )
{
// these checks handle cases of
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
// b) transposed arrays, where _strides[] elements go in non-descending order
// c) flipped arrays, where some of _strides[] elements are negative
// the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set
if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) ||
(i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) )
needcopy = true;
}
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
needcopy = true;
if (needcopy)
{
if (info.outputarg)
{
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
return false;
}
if( needcast ) {
o = PyArray_Cast(oarr, new_typenum);
oarr = (PyArrayObject*) o;
}
else {
oarr = PyArray_GETCONTIGUOUS(oarr);
o = (PyObject*) oarr;
}
_strides = PyArray_STRIDES(oarr);
}
// Normalize strides in case NPY_RELAXED_STRIDES is set
size_t default_step = elemsize;
for ( int i = ndims - 1; i >= 0; --i )
{
size[i] = (int)_sizes[i];
if ( size[i] > 1 )
{
step[i] = (size_t)_strides[i];
default_step = step[i] * size[i];
}
else
{
step[i] = default_step;
default_step *= size[i];
}
}
// handle degenerate case
if( ndims == 0) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
if( ismultichannel )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}
if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", info.name);
return false;
}
m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
m.addref();
if( !needcopy )
{
Py_INCREF(o);
}
m.allocator = &g_numpyAllocator;
return true;
}
template<>
bool pyopencv_to(PyObject* o, Mat& m, const char* name)
{
return pyopencv_to(o, m, ArgInfo(name, 0));
}
template<>
PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->u || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
PyObject* o = (PyObject*)p->u->userdata;
Py_INCREF(o);
return o;
}
template<>
bool pyopencv_to(PyObject *o, Scalar& s, const char *name)
{
if(!o || o == Py_None)
return true;
if (PySequence_Check(o)) {
PyObject *fi = PySequence_Fast(o, name);
if (fi == NULL)
return false;
if (4 < PySequence_Fast_GET_SIZE(fi))
{
failmsg("Scalar value for argument '%s' is longer than 4", name);
return false;
}
for (Py_ssize_t i = 0; i < PySequence_Fast_GET_SIZE(fi); i++) {
PyObject *item = PySequence_Fast_GET_ITEM(fi, i);
if (PyFloat_Check(item) || PyInt_Check(item)) {
s[(int)i] = PyFloat_AsDouble(item);
} else {
failmsg("Scalar value for argument '%s' is not numeric", name);
return false;
}
}
Py_DECREF(fi);
} else {
if (PyFloat_Check(o) || PyInt_Check(o)) {
s[0] = PyFloat_AsDouble(o);
} else {
failmsg("Scalar value for argument '%s' is not numeric", name);
return false;
}
}
return true;
}
template<>
PyObject* pyopencv_from(const Scalar& src)
{
return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
}
template<>
PyObject* pyopencv_from(const bool& value)
{
return PyBool_FromLong(value);
}
#ifdef HAVE_OPENCV_STITCHING
template<>
PyObject* pyopencv_from(const Status& value)
{
return PyInt_FromLong(value);
}
#endif
template<>
bool pyopencv_to(PyObject* obj, bool& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
int _val = PyObject_IsTrue(obj);
if(_val < 0)
return false;
value = _val > 0;
return true;
}
template<>
PyObject* pyopencv_from(const size_t& value)
{
return PyLong_FromSize_t(value);
}
template<>
bool pyopencv_to(PyObject* obj, size_t& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
value = (int)PyLong_AsUnsignedLong(obj);
return value != (size_t)-1 || !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const int& value)
{
return PyInt_FromLong(value);
}
#ifdef HAVE_OPENCV_FLANN
template<>
PyObject* pyopencv_from(const cvflann_flann_algorithm_t& value)
{
return PyInt_FromLong(int(value));
}
template<>
PyObject* pyopencv_from(const cvflann_flann_distance_t& value)
{
return PyInt_FromLong(int(value));
}
#endif
template<>
bool pyopencv_to(PyObject* obj, int& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyInt_Check(obj))
value = (int)PyInt_AsLong(obj);
else if(PyLong_Check(obj))
value = (int)PyLong_AsLong(obj);
else
return false;
return value != -1 || !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const uchar& value)
{
return PyInt_FromLong(value);
}
template<>
bool pyopencv_to(PyObject* obj, uchar& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
int ivalue = (int)PyInt_AsLong(obj);
value = cv::saturate_cast<uchar>(ivalue);
return ivalue != -1 || !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const double& value)
{
return PyFloat_FromDouble(value);
}
template<>
bool pyopencv_to(PyObject* obj, double& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(!!PyInt_CheckExact(obj))
value = (double)PyInt_AS_LONG(obj);
else
value = PyFloat_AsDouble(obj);
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const float& value)
{
return PyFloat_FromDouble(value);
}
template<>
bool pyopencv_to(PyObject* obj, float& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(!!PyInt_CheckExact(obj))
value = (float)PyInt_AS_LONG(obj);
else
value = (float)PyFloat_AsDouble(obj);
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const int64& value)
{
return PyLong_FromLongLong(value);
}
template<>
PyObject* pyopencv_from(const String& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
template<>
bool pyopencv_to(PyObject* obj, String& value, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
char* str = PyString_AsString(obj);
if(!str)
return false;
value = String(str);
return true;
}
template<>
bool pyopencv_to(PyObject* obj, Size& sz, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ii", &sz.width, &sz.height) > 0;
}
template<>
PyObject* pyopencv_from(const Size& sz)
{
return Py_BuildValue("(ii)", sz.width, sz.height);
}
template<>
bool pyopencv_to(PyObject* obj, Rect& r, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
}
template<>
PyObject* pyopencv_from(const Rect& r)
{
return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
}
template<>
bool pyopencv_to(PyObject* obj, Rect2d& r, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "dddd", &r.x, &r.y, &r.width, &r.height) > 0;
}
template<>
PyObject* pyopencv_from(const Rect2d& r)
{
return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height);
}
template<>
bool pyopencv_to(PyObject* obj, Range& r, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
{
r = Range::all();
return true;
}
return PyArg_ParseTuple(obj, "ii", &r.start, &r.end) > 0;
}
template<>
PyObject* pyopencv_from(const Range& r)
{
return Py_BuildValue("(ii)", r.start, r.end);
}
template<>
bool pyopencv_to(PyObject* obj, Point& p, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(!!PyComplex_CheckExact(obj))
{
Py_complex c = PyComplex_AsCComplex(obj);
p.x = saturate_cast<int>(c.real);
p.y = saturate_cast<int>(c.imag);
return true;
}
return PyArg_ParseTuple(obj, "ii", &p.x, &p.y) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, Point2f& p, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(!!PyComplex_CheckExact(obj))
{
Py_complex c = PyComplex_AsCComplex(obj);
p.x = saturate_cast<float>(c.real);
p.y = saturate_cast<float>(c.imag);
return true;
}
return PyArg_ParseTuple(obj, "ff", &p.x, &p.y) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, Point2d& p, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(!!PyComplex_CheckExact(obj))
{
Py_complex c = PyComplex_AsCComplex(obj);
p.x = saturate_cast<double>(c.real);
p.y = saturate_cast<double>(c.imag);
return true;
}
return PyArg_ParseTuple(obj, "dd", &p.x, &p.y) > 0;
}
template<>
PyObject* pyopencv_from(const Point& p)
{
return Py_BuildValue("(ii)", p.x, p.y);
}
template<>
PyObject* pyopencv_from(const Point2f& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<>
bool pyopencv_to(PyObject* obj, Vec3d& v, const char* name)
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
}
template<>
PyObject* pyopencv_from(const Vec3d& v)
{
return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
}
template<>
PyObject* pyopencv_from(const Vec2d& v)
{
return Py_BuildValue("(dd)", v[0], v[1]);
}
template<>
PyObject* pyopencv_from(const Point2d& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<typename _Tp> struct pyopencvVecConverter
{
static bool to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo info)
{
typedef typename DataType<_Tp>::channel_type _Cp;
if(!obj || obj == Py_None)
return true;
if (PyArray_Check(obj))
{
Mat m;
pyopencv_to(obj, m, info);
m.copyTo(value);
}
if (!PySequence_Check(obj))
return false;
PyObject *seq = PySequence_Fast(obj, info.name);
if (seq == NULL)
return false;
int i, j, n = (int)PySequence_Fast_GET_SIZE(seq);
value.resize(n);
int type = DataType<_Tp>::type;
int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
PyObject** items = PySequence_Fast_ITEMS(seq);
for( i = 0; i < n; i++ )
{
PyObject* item = items[i];
PyObject* seq_i = 0;
PyObject** items_i = &item;
_Cp* data = (_Cp*)&value[i];
if( channels == 2 && PyComplex_CheckExact(item) )
{
Py_complex c = PyComplex_AsCComplex(obj);
data[0] = saturate_cast<_Cp>(c.real);
data[1] = saturate_cast<_Cp>(c.imag);
continue;
}
if( channels > 1 )
{
if( PyArray_Check(item))
{
Mat src;
pyopencv_to(item, src, info);
if( src.dims != 2 || src.channels() != 1 ||
((src.cols != 1 || src.rows != channels) &&
(src.cols != channels || src.rows != 1)))
break;
Mat dst(src.rows, src.cols, depth, data);
src.convertTo(dst, type);
if( dst.data != (uchar*)data )
break;
continue;
}
seq_i = PySequence_Fast(item, info.name);
if( !seq_i || (int)PySequence_Fast_GET_SIZE(seq_i) != channels )
{
Py_XDECREF(seq_i);
break;
}
items_i = PySequence_Fast_ITEMS(seq_i);
}
for( j = 0; j < channels; j++ )
{
PyObject* item_ij = items_i[j];
if( PyInt_Check(item_ij))
{
int v = (int)PyInt_AsLong(item_ij);
if( v == -1 && PyErr_Occurred() )
break;
data[j] = saturate_cast<_Cp>(v);
}
else if( PyLong_Check(item_ij))
{
int v = (int)PyLong_AsLong(item_ij);
if( v == -1 && PyErr_Occurred() )
break;
data[j] = saturate_cast<_Cp>(v);
}
else if( PyFloat_Check(item_ij))
{
double v = PyFloat_AsDouble(item_ij);
if( PyErr_Occurred() )
break;
data[j] = saturate_cast<_Cp>(v);
}
else
break;
}
Py_XDECREF(seq_i);
if( j < channels )
break;
}
Py_DECREF(seq);
return i == n;
}
static PyObject* from(const std::vector<_Tp>& value)
{
if(value.empty())
return PyTuple_New(0);
Mat src((int)value.size(), DataType<_Tp>::channels, DataType<_Tp>::depth, (uchar*)&value[0]);
return pyopencv_from(src);
}
};
template<typename _Tp>
bool pyopencv_to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo info)
{
return pyopencvVecConverter<_Tp>::to(obj, value, info);
}
template<typename _Tp>
PyObject* pyopencv_from(const std::vector<_Tp>& value)
{
return pyopencvVecConverter<_Tp>::from(value);
}
template<typename _Tp> static inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<_Tp>& value, const ArgInfo info)
{
if(!obj || obj == Py_None)
return true;
if (!PySequence_Check(obj))
return false;
PyObject *seq = PySequence_Fast(obj, info.name);
if (seq == NULL)
return false;
int i, n = (int)PySequence_Fast_GET_SIZE(seq);
value.resize(n);
PyObject** items = PySequence_Fast_ITEMS(seq);
for( i = 0; i < n; i++ )
{
PyObject* item = items[i];
if(!pyopencv_to(item, value[i], info))
break;
}
Py_DECREF(seq);
return i == n;
}
template<typename _Tp> static inline PyObject* pyopencv_from_generic_vec(const std::vector<_Tp>& value)
{
int i, n = (int)value.size();
PyObject* seq = PyList_New(n);
for( i = 0; i < n; i++ )
{
PyObject* item = pyopencv_from(value[i]);
if(!item)
break;
PyList_SET_ITEM(seq, i, item);
}
if( i < n )
{
Py_DECREF(seq);
return 0;
}
return seq;
}
template<typename _Tp> struct pyopencvVecConverter<std::vector<_Tp> >
{
static bool to(PyObject* obj, std::vector<std::vector<_Tp> >& value, const ArgInfo info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<std::vector<_Tp> >& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<Mat>
{
static bool to(PyObject* obj, std::vector<Mat>& value, const ArgInfo info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<Mat>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<KeyPoint>
{
static bool to(PyObject* obj, std::vector<KeyPoint>& value, const ArgInfo info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<KeyPoint>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<DMatch>
{
static bool to(PyObject* obj, std::vector<DMatch>& value, const ArgInfo info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<DMatch>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<String>
{
static bool to(PyObject* obj, std::vector<String>& value, const ArgInfo info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<String>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<>
bool pyopencv_to(PyObject *obj, TermCriteria& dst, const char *name)
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
}
template<>
PyObject* pyopencv_from(const TermCriteria& src)
{
return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
}
template<>
bool pyopencv_to(PyObject *obj, RotatedRect& dst, const char *name)
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;
}
template<>
PyObject* pyopencv_from(const RotatedRect& src)
{
return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
}
template<>
PyObject* pyopencv_from(const Moments& m)
{
return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
"m00", m.m00, "m10", m.m10, "m01", m.m01,
"m20", m.m20, "m11", m.m11, "m02", m.m02,
"m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
"mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
"mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
"nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
"nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03);
}
#ifdef HAVE_OPENCV_FLANN
template<>
bool pyopencv_to(PyObject *o, cv::flann::IndexParams& p, const char *name)
{
(void)name;
bool ok = true;
PyObject* key = NULL;
PyObject* item = NULL;
Py_ssize_t pos = 0;
if(PyDict_Check(o)) {
while(PyDict_Next(o, &pos, &key, &item)) {
if( !PyString_Check(key) ) {
ok = false;
break;
}
String k = PyString_AsString(key);
if( PyString_Check(item) )
{
const char* value = PyString_AsString(item);
p.setString(k, value);
}
else if( !!PyBool_Check(item) )
p.setBool(k, item == Py_True);
else if( PyInt_Check(item) )
{
int value = (int)PyInt_AsLong(item);
if( strcmp(k.c_str(), "algorithm") == 0 )
p.setAlgorithm(value);
else
p.setInt(k, value);
}
else if( PyFloat_Check(item) )
{
double value = PyFloat_AsDouble(item);
p.setDouble(k, value);
}
else
{
ok = false;
break;
}
}
}
return ok && !PyErr_Occurred();
}
template<>
bool pyopencv_to(PyObject* obj, cv::flann::SearchParams & value, const char * name)
{
return pyopencv_to<cv::flann::IndexParams>(obj, value, name);
}
#endif
template <typename T>
bool pyopencv_to(PyObject *o, Ptr<T>& p, const char *name)
{
p = makePtr<T>();
return pyopencv_to(o, *p, name);
}
#ifdef HAVE_OPENCV_FLANN
template<>
bool pyopencv_to(PyObject *o, cvflann::flann_distance_t& dist, const char *name)
{
int d = (int)dist;
bool ok = pyopencv_to(o, d, name);
dist = (cvflann::flann_distance_t)d;
return ok;
}
#endif
////////////////////////////////////////////////////////////////////////////////////////////////////
// TODO: REMOVE used only by ml wrapper
template<>
bool pyopencv_to(PyObject *obj, CvTermCriteria& dst, const char *name)
{
(void)name;
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.max_iter, &dst.epsilon) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, CvSlice& r, const char* name)
{
(void)name;
if(!obj || obj == Py_None)
return true;
if(PyObject_Size(obj) == 0)
{
r = CV_WHOLE_SEQ;
return true;
}
return PyArg_ParseTuple(obj, "ii", &r.start_index, &r.end_index) > 0;
}
////////////////////////////////////////////////////////////////////////////////////////////////////
static void OnMouse(int event, int x, int y, int flags, void* param)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject *o = (PyObject*)param;
PyObject *args = Py_BuildValue("iiiiO", event, x, y, flags, PyTuple_GetItem(o, 1));
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
if (r == NULL)
PyErr_Print();
else
Py_DECREF(r);
Py_DECREF(args);
PyGILState_Release(gstate);
}
#ifdef HAVE_OPENCV_HIGHGUI
static PyObject *pycvSetMouseCallback(PyObject*, PyObject *args, PyObject *kw)
{
const char *keywords[] = { "window_name", "on_mouse", "param", NULL };
char* name;
PyObject *on_mouse;
PyObject *param = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|O", (char**)keywords, &name, &on_mouse, &param))
return NULL;
if (!PyCallable_Check(on_mouse)) {
PyErr_SetString(PyExc_TypeError, "on_mouse must be callable");
return NULL;
}
if (param == NULL) {
param = Py_None;
}
ERRWRAP2(setMouseCallback(name, OnMouse, Py_BuildValue("OO", on_mouse, param)));
Py_RETURN_NONE;
}
#endif
static void OnChange(int pos, void *param)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject *o = (PyObject*)param;
PyObject *args = Py_BuildValue("(i)", pos);
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
if (r == NULL)
PyErr_Print();
Py_DECREF(args);
PyGILState_Release(gstate);
}
#ifdef HAVE_OPENCV_HIGHGUI
static PyObject *pycvCreateTrackbar(PyObject*, PyObject *args)
{
PyObject *on_change;
char* trackbar_name;
char* window_name;
int *value = new int;
int count;
if (!PyArg_ParseTuple(args, "ssiiO", &trackbar_name, &window_name, value, &count, &on_change))
return NULL;
if (!PyCallable_Check(on_change)) {
PyErr_SetString(PyExc_TypeError, "on_change must be callable");
return NULL;
}
ERRWRAP2(createTrackbar(trackbar_name, window_name, value, count, OnChange, Py_BuildValue("OO", on_change, Py_None)));
Py_RETURN_NONE;
}
#endif
///////////////////////////////////////////////////////////////////////////////////////
static int convert_to_char(PyObject *o, char *dst, const char *name = "no_name")
{
if (PyString_Check(o) && PyString_Size(o) == 1) {
*dst = PyString_AsString(o)[0];
return 1;
} else {
(*dst) = 0;
return failmsg("Expected single character string for argument '%s'", name);
}
}
#if PY_MAJOR_VERSION >= 3
#define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return NULL;
#else
#define MKTYPE2(NAME) pyopencv_##NAME##_specials(); if (!to_ok(&pyopencv_##NAME##_Type)) return
#endif
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wunused-parameter"
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
#include "pyopencv_generated_types.h"
#include "pyopencv_generated_funcs.h"
static PyMethodDef special_methods[] = {
#ifdef HAVE_OPENCV_HIGHGUI
{"createTrackbar", pycvCreateTrackbar, METH_VARARGS, "createTrackbar(trackbarName, windowName, value, count, onChange) -> None"},
{"setMouseCallback", (PyCFunction)pycvSetMouseCallback, METH_VARARGS | METH_KEYWORDS, "setMouseCallback(windowName, onMouse [, param]) -> None"},
#endif
{NULL, NULL},
};
/************************************************************************/
/* Module init */
struct ConstDef
{
const char * name;
long val;
};
static void init_submodule(PyObject * root, const char * name, PyMethodDef * methods, ConstDef * consts)
{
// traverse and create nested submodules
std::string s = name;
size_t i = s.find('.');
while (i < s.length() && i != std::string::npos)
{
size_t j = s.find('.', i);
if (j == std::string::npos)
j = s.length();
std::string short_name = s.substr(i, j-i);
std::string full_name = s.substr(0, j);
i = j+1;
PyObject * d = PyModule_GetDict(root);
PyObject * submod = PyDict_GetItemString(d, short_name.c_str());
if (submod == NULL)
{
submod = PyImport_AddModule(full_name.c_str());
PyDict_SetItemString(d, short_name.c_str(), submod);
}
if (short_name != "")
root = submod;
}
// populate module's dict
PyObject * d = PyModule_GetDict(root);
for (PyMethodDef * m = methods; m->ml_name != NULL; ++m)
{
PyObject * method_obj = PyCFunction_NewEx(m, NULL, NULL);
PyDict_SetItemString(d, m->ml_name, method_obj);
Py_DECREF(method_obj);
}
for (ConstDef * c = consts; c->name != NULL; ++c)
{
PyDict_SetItemString(d, c->name, PyInt_FromLong(c->val));
}
}
#include "pyopencv_generated_ns_reg.h"
static int to_ok(PyTypeObject *to)
{
to->tp_alloc = PyType_GenericAlloc;
to->tp_new = PyType_GenericNew;
to->tp_flags = Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE;
return (PyType_Ready(to) == 0);
}
#if PY_MAJOR_VERSION >= 3
extern "C" CV_EXPORTS PyObject* PyInit_cv2();
static struct PyModuleDef cv2_moduledef =
{
PyModuleDef_HEAD_INIT,
MODULESTR,
"Python wrapper for OpenCV.",
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
special_methods
};
PyObject* PyInit_cv2()
#else
extern "C" CV_EXPORTS void initcv2();
void initcv2()
#endif
{
import_array();
#include "pyopencv_generated_type_reg.h"
#if PY_MAJOR_VERSION >= 3
PyObject* m = PyModule_Create(&cv2_moduledef);
#else
PyObject* m = Py_InitModule(MODULESTR, special_methods);
#endif
init_submodules(m); // from "pyopencv_generated_ns_reg.h"
PyObject* d = PyModule_GetDict(m);
PyDict_SetItemString(d, "__version__", PyString_FromString(CV_VERSION));
opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, NULL);
PyDict_SetItemString(d, "error", opencv_error);
#define PUBLISH(I) PyDict_SetItemString(d, #I, PyInt_FromLong(I))
//#define PUBLISHU(I) PyDict_SetItemString(d, #I, PyLong_FromUnsignedLong(I))
#define PUBLISH2(I, value) PyDict_SetItemString(d, #I, PyLong_FromLong(value))
PUBLISH(CV_8U);
PUBLISH(CV_8UC1);
PUBLISH(CV_8UC2);
PUBLISH(CV_8UC3);
PUBLISH(CV_8UC4);
PUBLISH(CV_8S);
PUBLISH(CV_8SC1);
PUBLISH(CV_8SC2);
PUBLISH(CV_8SC3);
PUBLISH(CV_8SC4);
PUBLISH(CV_16U);
PUBLISH(CV_16UC1);
PUBLISH(CV_16UC2);
PUBLISH(CV_16UC3);
PUBLISH(CV_16UC4);
PUBLISH(CV_16S);
PUBLISH(CV_16SC1);
PUBLISH(CV_16SC2);
PUBLISH(CV_16SC3);
PUBLISH(CV_16SC4);
PUBLISH(CV_32S);
PUBLISH(CV_32SC1);
PUBLISH(CV_32SC2);
PUBLISH(CV_32SC3);
PUBLISH(CV_32SC4);
PUBLISH(CV_32F);
PUBLISH(CV_32FC1);
PUBLISH(CV_32FC2);
PUBLISH(CV_32FC3);
PUBLISH(CV_32FC4);
PUBLISH(CV_64F);
PUBLISH(CV_64FC1);
PUBLISH(CV_64FC2);
PUBLISH(CV_64FC3);
PUBLISH(CV_64FC4);
#if PY_MAJOR_VERSION >= 3
return m;
#endif
}