opencv/tests/cv/src/atemplmatch.cpp

432 lines
16 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "cvtest.h"
static const char* templmatch_param_names[] = { "template_size", "method", "size", "channels", "depth", 0 };
static const int templmatch_depths[] = { CV_8U, CV_32F, -1 };
static const int templmatch_channels[] = { 1, 3, -1 };
static const CvSize templmatch_sizes[] = {{320, 240}, {1024,768}, {-1,-1}};
static const CvSize templmatch_whole_sizes[] = {{320,240}, {1024,768}, {-1,-1}};
static const CvSize templmatch_template_sizes[] = {{15,15}, {60,60}, {-1,-1}};
static const char* templmatch_methods[] = { "sqdiff", "sqdiff_norm", "ccorr", "ccorr_normed", "ccoeff", "ccoeff_normed", 0 };
class CV_TemplMatchTest : public CvArrTest
{
public:
CV_TemplMatchTest();
protected:
int read_params( CvFileStorage* fs );
void get_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types );
void get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high );
double get_success_error_level( int test_case_idx, int i, int j );
void run_func();
void prepare_to_validation( int );
int write_default_params(CvFileStorage* fs);
void get_timing_test_array_types_and_sizes( int test_case_idx, CvSize** sizes, int** types,
CvSize** whole_sizes, bool *are_images );
void print_timing_params( int test_case_idx, char* ptr, int params_left );
int max_template_size;
int method;
bool test_cpp;
};
CV_TemplMatchTest::CV_TemplMatchTest()
: CvArrTest( "match-template", "cvMatchTemplate", "" )
{
test_array[INPUT].push(NULL);
test_array[INPUT].push(NULL);
test_array[OUTPUT].push(NULL);
test_array[REF_OUTPUT].push(NULL);
element_wise_relative_error = false;
max_template_size = 100;
method = 0;
size_list = templmatch_sizes;
whole_size_list = templmatch_whole_sizes;
cn_list = templmatch_channels;
depth_list = templmatch_depths;
default_timing_param_names = templmatch_param_names;
test_cpp = false;
}
int CV_TemplMatchTest::read_params( CvFileStorage* fs )
{
int code = CvArrTest::read_params( fs );
if( code < 0 )
return code;
if( ts->get_testing_mode() == CvTS::CORRECTNESS_CHECK_MODE )
{
max_template_size = cvReadInt( find_param( fs, "max_template_size" ), max_template_size );
max_template_size = cvTsClipInt( max_template_size, 1, 100 );
}
return code;
}
int CV_TemplMatchTest::write_default_params( CvFileStorage* fs )
{
int code = CvArrTest::write_default_params( fs );
if( code < 0 )
return code;
if( ts->get_testing_mode() == CvTS::CORRECTNESS_CHECK_MODE )
{
write_param( fs, "max_template_size", max_template_size );
}
else
{
int i;
start_write_param( fs );
cvStartWriteStruct( fs, "template_size", CV_NODE_SEQ+CV_NODE_FLOW );
for( i = 0; templmatch_template_sizes[i].width >= 0; i++ )
{
cvStartWriteStruct( fs, 0, CV_NODE_SEQ+CV_NODE_FLOW );
cvWriteInt( fs, 0, templmatch_template_sizes[i].width );
cvWriteInt( fs, 0, templmatch_template_sizes[i].height );
cvEndWriteStruct(fs);
}
cvEndWriteStruct(fs);
write_string_list( fs, "method", templmatch_methods );
}
return code;
}
void CV_TemplMatchTest::get_minmax_bounds( int i, int j, int type, CvScalar* low, CvScalar* high )
{
CvArrTest::get_minmax_bounds( i, j, type, low, high );
int depth = CV_MAT_DEPTH(type);
if( depth == CV_32F )
{
*low = cvScalarAll(-10.);
*high = cvScalarAll(10.);
}
}
void CV_TemplMatchTest::get_test_array_types_and_sizes( int test_case_idx,
CvSize** sizes, int** types )
{
CvRNG* rng = ts->get_rng();
int depth = cvTsRandInt(rng) % 2, cn = cvTsRandInt(rng) & 1 ? 3 : 1;
CvArrTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
depth = depth == 0 ? CV_8U : CV_32F;
types[INPUT][0] = types[INPUT][1] = CV_MAKETYPE(depth,cn);
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
sizes[INPUT][1].width = cvTsRandInt(rng)%MIN(sizes[INPUT][1].width,max_template_size) + 1;
sizes[INPUT][1].height = cvTsRandInt(rng)%MIN(sizes[INPUT][1].height,max_template_size) + 1;
sizes[OUTPUT][0].width = sizes[INPUT][0].width - sizes[INPUT][1].width + 1;
sizes[OUTPUT][0].height = sizes[INPUT][0].height - sizes[INPUT][1].height + 1;
sizes[REF_OUTPUT][0] = sizes[OUTPUT][0];
method = cvTsRandInt(rng)%6;
test_cpp = (cvTsRandInt(rng) & 256) == 0;
}
void CV_TemplMatchTest::get_timing_test_array_types_and_sizes( int test_case_idx,
CvSize** sizes, int** types, CvSize** whole_sizes, bool *are_images )
{
CvArrTest::get_timing_test_array_types_and_sizes( test_case_idx, sizes, types,
whole_sizes, are_images );
const char* method_str = cvReadString( find_timing_param( "method" ), "ccorr" );
const CvFileNode* node = find_timing_param( "template_size" );
CvSize templ_size, result_size;
assert( node && CV_NODE_IS_SEQ( node->tag ));
method = strncmp( method_str, "sqdiff", 6 ) == 0 ? CV_TM_SQDIFF :
strncmp( method_str, "ccorr", 5 ) == 0 ? CV_TM_CCORR : CV_TM_CCOEFF;
method += strstr( method_str, "_normed" ) != 0;
cvReadRawData( ts->get_file_storage(), node, &templ_size, "2i" );
sizes[INPUT][1] = whole_sizes[INPUT][1] = templ_size;
result_size.width = sizes[INPUT][0].width - templ_size.width + 1;
result_size.height = sizes[INPUT][0].height - templ_size.height + 1;
assert( result_size.width > 0 && result_size.height > 0 );
sizes[OUTPUT][0] = whole_sizes[OUTPUT][0] = result_size;
types[OUTPUT][0] = CV_32FC1;
}
void CV_TemplMatchTest::print_timing_params( int test_case_idx, char* ptr, int params_left )
{
sprintf( ptr, "%s,", cvReadString( find_timing_param( "method" ), "ccorr" ) );
ptr += strlen(ptr);
sprintf( ptr, "templ_size=%dx%d,", test_mat[INPUT][1].width, test_mat[INPUT][1].height );
ptr += strlen(ptr);
params_left -= 2;
CvArrTest::print_timing_params( test_case_idx, ptr, params_left );
}
double CV_TemplMatchTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
if( CV_MAT_DEPTH(test_mat[INPUT][1].type) == CV_8U ||
(method >= CV_TM_CCOEFF && test_mat[INPUT][1].cols*test_mat[INPUT][1].rows <= 2) )
return 1e-2;
else
return 1e-3;
}
void CV_TemplMatchTest::run_func()
{
if(!test_cpp)
cvMatchTemplate( test_array[INPUT][0], test_array[INPUT][1], test_array[OUTPUT][0], method );
else
{
cv::Mat _out = cv::cvarrToMat(test_array[OUTPUT][0]);
cv::matchTemplate(cv::cvarrToMat(test_array[INPUT][0]), cv::cvarrToMat(test_array[INPUT][1]), _out, method);
}
}
static void cvTsMatchTemplate( const CvMat* img, const CvMat* templ, CvMat* result, int method )
{
int i, j, k, l;
int depth = CV_MAT_DEPTH(img->type), cn = CV_MAT_CN(img->type);
int width_n = templ->cols*cn, height = templ->rows;
int a_step = img->step / CV_ELEM_SIZE(img->type & CV_MAT_DEPTH_MASK);
int b_step = templ->step / CV_ELEM_SIZE(templ->type & CV_MAT_DEPTH_MASK);
CvScalar b_mean, b_sdv;
double b_denom = 1., b_sum2 = 0;
int area = templ->rows*templ->cols;
cvTsMeanStdDevNonZero( templ, 0, &b_mean, &b_sdv, 0 );
for( i = 0; i < cn; i++ )
b_sum2 += (b_sdv.val[i]*b_sdv.val[i] + b_mean.val[i]*b_mean.val[i])*area;
if( CV_SQR(b_sdv.val[0]) + CV_SQR(b_sdv.val[1]) +
CV_SQR(b_sdv.val[2]) + CV_SQR(b_sdv.val[3]) < DBL_EPSILON &&
method == CV_TM_CCOEFF_NORMED )
{
cvSet( result, cvScalarAll(1.) );
return;
}
if( method & 1 )
{
b_denom = 0;
if( method != CV_TM_CCOEFF_NORMED )
{
b_denom = b_sum2;
}
else
{
for( i = 0; i < cn; i++ )
b_denom += b_sdv.val[i]*b_sdv.val[i]*area;
}
b_denom = sqrt(b_denom);
if( b_denom == 0 )
b_denom = 1.;
}
assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
for( i = 0; i < result->rows; i++ )
{
for( j = 0; j < result->cols; j++ )
{
CvScalar a_sum = {{ 0, 0, 0, 0 }}, a_sum2 = {{ 0, 0, 0, 0 }};
CvScalar ccorr = {{ 0, 0, 0, 0 }};
double value = 0.;
if( depth == CV_8U )
{
const uchar* a = img->data.ptr + i*img->step + j*cn;
const uchar* b = templ->data.ptr;
if( cn == 1 || method < CV_TM_CCOEFF )
{
for( k = 0; k < height; k++, a += a_step, b += b_step )
for( l = 0; l < width_n; l++ )
{
ccorr.val[0] += a[l]*b[l];
a_sum.val[0] += a[l];
a_sum2.val[0] += a[l]*a[l];
}
}
else
{
for( k = 0; k < height; k++, a += a_step, b += b_step )
for( l = 0; l < width_n; l += 3 )
{
ccorr.val[0] += a[l]*b[l];
ccorr.val[1] += a[l+1]*b[l+1];
ccorr.val[2] += a[l+2]*b[l+2];
a_sum.val[0] += a[l];
a_sum.val[1] += a[l+1];
a_sum.val[2] += a[l+2];
a_sum2.val[0] += a[l]*a[l];
a_sum2.val[1] += a[l+1]*a[l+1];
a_sum2.val[2] += a[l+2]*a[l+2];
}
}
}
else
{
const float* a = (const float*)(img->data.ptr + i*img->step) + j*cn;
const float* b = (const float*)templ->data.ptr;
if( cn == 1 || method < CV_TM_CCOEFF )
{
for( k = 0; k < height; k++, a += a_step, b += b_step )
for( l = 0; l < width_n; l++ )
{
ccorr.val[0] += a[l]*b[l];
a_sum.val[0] += a[l];
a_sum2.val[0] += a[l]*a[l];
}
}
else
{
for( k = 0; k < height; k++, a += a_step, b += b_step )
for( l = 0; l < width_n; l += 3 )
{
ccorr.val[0] += a[l]*b[l];
ccorr.val[1] += a[l+1]*b[l+1];
ccorr.val[2] += a[l+2]*b[l+2];
a_sum.val[0] += a[l];
a_sum.val[1] += a[l+1];
a_sum.val[2] += a[l+2];
a_sum2.val[0] += a[l]*a[l];
a_sum2.val[1] += a[l+1]*a[l+1];
a_sum2.val[2] += a[l+2]*a[l+2];
}
}
}
switch( method )
{
case CV_TM_CCORR:
case CV_TM_CCORR_NORMED:
value = ccorr.val[0];
break;
case CV_TM_SQDIFF:
case CV_TM_SQDIFF_NORMED:
value = (a_sum2.val[0] + b_sum2 - 2*ccorr.val[0]);
break;
default:
value = (ccorr.val[0] - a_sum.val[0]*b_mean.val[0]+
ccorr.val[1] - a_sum.val[1]*b_mean.val[1]+
ccorr.val[2] - a_sum.val[2]*b_mean.val[2]);
}
if( method & 1 )
{
double denom;
// calc denominator
if( method != CV_TM_CCOEFF_NORMED )
{
denom = a_sum2.val[0] + a_sum2.val[1] + a_sum2.val[2];
}
else
{
denom = a_sum2.val[0] - (a_sum.val[0]*a_sum.val[0])/area;
denom += a_sum2.val[1] - (a_sum.val[1]*a_sum.val[1])/area;
denom += a_sum2.val[2] - (a_sum.val[2]*a_sum.val[2])/area;
}
denom = sqrt(MAX(denom,0))*b_denom;
if( fabs(value) < denom )
value /= denom;
else if( fabs(value) < denom*1.125 )
value = value > 0 ? 1 : -1;
else
value = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
}
((float*)(result->data.ptr + result->step*i))[j] = (float)value;
}
}
}
void CV_TemplMatchTest::prepare_to_validation( int /*test_case_idx*/ )
{
cvTsMatchTemplate( &test_mat[INPUT][0], &test_mat[INPUT][1],
&test_mat[REF_OUTPUT][0], method );
//if( ts->get_current_test_info()->test_case_idx == 0 )
/*{
CvFileStorage* fs = cvOpenFileStorage( "_match_template.yml", 0, CV_STORAGE_WRITE );
cvWrite( fs, "image", &test_mat[INPUT][0] );
cvWrite( fs, "template", &test_mat[INPUT][1] );
cvWrite( fs, "ref", &test_mat[REF_OUTPUT][0] );
cvWrite( fs, "opencv", &test_mat[OUTPUT][0] );
cvWriteInt( fs, "method", method );
cvReleaseFileStorage( &fs );
}*/
if( method >= CV_TM_CCOEFF )
{
// avoid numerical stability problems in singular cases (when the results are near to 0)
const double delta = 10.;
cvTsAdd( &test_mat[REF_OUTPUT][0], cvScalar(1.), 0, cvScalar(0.),
cvScalar(delta), &test_mat[REF_OUTPUT][0], 0 );
cvTsAdd( &test_mat[OUTPUT][0], cvScalar(1.), 0, cvScalar(0.),
cvScalar(delta), &test_mat[OUTPUT][0], 0 );
}
}
CV_TemplMatchTest templ_match;