opencv/modules/gpu/src/cuda/bf_knnmatch.cu

1163 lines
59 KiB
Plaintext

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "internal_shared.hpp"
#include "opencv2/gpu/device/limits.hpp"
#include "opencv2/gpu/device/vec_distance.hpp"
#include "opencv2/gpu/device/datamov_utils.hpp"
namespace cv { namespace gpu { namespace device
{
namespace bf_knnmatch
{
///////////////////////////////////////////////////////////////////////////////
// Reduction
template <int BLOCK_SIZE>
__device__ void findBestMatch(float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
float* s_distance, int* s_trainIdx)
{
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
s_distance += threadIdx.y * BLOCK_SIZE;
s_trainIdx += threadIdx.y * BLOCK_SIZE;
s_distance[threadIdx.x] = bestDistance1;
s_trainIdx[threadIdx.x] = bestTrainIdx1;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance1)
{
myBestDistance2 = myBestDistance1;
myBestTrainIdx2 = myBestTrainIdx1;
myBestDistance1 = val;
myBestTrainIdx1 = s_trainIdx[i];
}
else if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
}
}
}
__syncthreads();
s_distance[threadIdx.x] = bestDistance2;
s_trainIdx[threadIdx.x] = bestTrainIdx2;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
}
}
}
bestDistance1 = myBestDistance1;
bestDistance2 = myBestDistance2;
bestTrainIdx1 = myBestTrainIdx1;
bestTrainIdx2 = myBestTrainIdx2;
}
template <int BLOCK_SIZE>
__device__ void findBestMatch(float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2,
float* s_distance, int* s_trainIdx, int* s_imgIdx)
{
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
s_distance += threadIdx.y * BLOCK_SIZE;
s_trainIdx += threadIdx.y * BLOCK_SIZE;
s_imgIdx += threadIdx.y * BLOCK_SIZE;
s_distance[threadIdx.x] = bestDistance1;
s_trainIdx[threadIdx.x] = bestTrainIdx1;
s_imgIdx[threadIdx.x] = bestImgIdx1;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance1)
{
myBestDistance2 = myBestDistance1;
myBestTrainIdx2 = myBestTrainIdx1;
myBestImgIdx2 = myBestImgIdx1;
myBestDistance1 = val;
myBestTrainIdx1 = s_trainIdx[i];
myBestImgIdx1 = s_imgIdx[i];
}
else if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
myBestImgIdx2 = s_imgIdx[i];
}
}
}
__syncthreads();
s_distance[threadIdx.x] = bestDistance2;
s_trainIdx[threadIdx.x] = bestTrainIdx2;
s_imgIdx[threadIdx.x] = bestImgIdx2;
__syncthreads();
if (threadIdx.x == 0)
{
#pragma unroll
for (int i = 0; i < BLOCK_SIZE; ++i)
{
float val = s_distance[i];
if (val < myBestDistance2)
{
myBestDistance2 = val;
myBestTrainIdx2 = s_trainIdx[i];
myBestImgIdx2 = s_imgIdx[i];
}
}
}
bestDistance1 = myBestDistance1;
bestDistance2 = myBestDistance2;
bestTrainIdx1 = myBestTrainIdx1;
bestTrainIdx2 = myBestTrainIdx2;
bestImgIdx1 = myBestImgIdx1;
bestImgIdx2 = myBestImgIdx2;
}
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled Cached
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename T, typename U>
__device__ void loadQueryToSmem(int queryIdx, const PtrStepSz<T>& query, U* s_query)
{
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_query[threadIdx.y * MAX_DESC_LEN + loadX] = loadX < query.cols ? query.ptr(::min(queryIdx, query.rows - 1))[loadX] : 0;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__device__ void loopUnrolledCached(int queryIdx, const PtrStepSz<T>& query, int imgIdx, const PtrStepSz<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2)
{
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < train.cols)
{
T val;
ForceGlob<T>::Load(train.ptr(::min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * MAX_DESC_LEN + i * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
typename Dist::result_type distVal = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx))
{
if (distVal < bestDistance1)
{
bestImgIdx2 = bestImgIdx1;
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestImgIdx1 = imgIdx;
bestDistance1 = distVal;
bestTrainIdx1 = trainIdx;
}
else if (distVal < bestDistance2)
{
bestImgIdx2 = imgIdx;
bestDistance2 = distVal;
bestTrainIdx2 = trainIdx;
}
}
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolledCached(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, int2* bestTrainIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestTrainIdx1, myBestTrainIdx2);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolledCached(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
const PtrStepSz<int2>& trainIdx, const PtrStepSz<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= BLOCK_SIZE ? MAX_DESC_LEN : BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolledCached(const PtrStepSz<T> query, const PtrStepSz<T>* trains, int n, const Mask mask, int2* bestTrainIdx, int2* bestImgIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * MAX_DESC_LEN);
loadQueryToSmem<BLOCK_SIZE, MAX_DESC_LEN>(queryIdx, query, s_query);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const PtrStepSz<T> train = trains[imgIdx];
m.next();
loopUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2);
}
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2, s_distance, s_trainIdx, s_imgIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestImgIdx[queryIdx] = make_int2(myBestImgIdx1, myBestImgIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolledCached(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
const PtrStepSz<int2>& trainIdx, const PtrStepSz<int2>& imgIdx, const PtrStepSz<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (BLOCK_SIZE * (MAX_DESC_LEN >= 2 * BLOCK_SIZE ? MAX_DESC_LEN : 2 * BLOCK_SIZE) + BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolledCached<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Match Unrolled
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__device__ void loopUnrolled(int queryIdx, const PtrStepSz<T>& query, int imgIdx, const PtrStepSz<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2)
{
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(::min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(::min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
typename Dist::result_type distVal = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx))
{
if (distVal < bestDistance1)
{
bestImgIdx2 = bestImgIdx1;
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestImgIdx1 = imgIdx;
bestDistance1 = distVal;
bestTrainIdx1 = trainIdx;
}
else if (distVal < bestDistance2)
{
bestImgIdx2 = imgIdx;
bestDistance2 = distVal;
bestTrainIdx2 = trainIdx;
}
}
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, int2* bestTrainIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestTrainIdx1, myBestTrainIdx2);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
const PtrStepSz<int2>& trainIdx, const PtrStepSz<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void matchUnrolled(const PtrStepSz<T> query, const PtrStepSz<T>* trains, int n, const Mask mask, int2* bestTrainIdx, int2* bestImgIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const PtrStepSz<T> train = trains[imgIdx];
m.next();
loopUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2);
}
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2, s_distance, s_trainIdx, s_imgIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestImgIdx[queryIdx] = make_int2(myBestImgIdx1, myBestImgIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void matchUnrolled(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
const PtrStepSz<int2>& trainIdx, const PtrStepSz<int2>& imgIdx, const PtrStepSz<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
matchUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Match
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__device__ void loop(int queryIdx, const PtrStepSz<T>& query, int imgIdx, const PtrStepSz<T>& train, const Mask& mask,
typename Dist::value_type* s_query, typename Dist::value_type* s_train,
float& bestDistance1, float& bestDistance2,
int& bestTrainIdx1, int& bestTrainIdx2,
int& bestImgIdx1, int& bestImgIdx2)
{
for (int t = 0, endt = (train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; ++t)
{
Dist dist;
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
if (loadX < query.cols)
{
T val;
ForceGlob<T>::Load(query.ptr(::min(queryIdx, query.rows - 1)), loadX, val);
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = val;
ForceGlob<T>::Load(train.ptr(::min(t * BLOCK_SIZE + threadIdx.y, train.rows - 1)), loadX, val);
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = val;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
typename Dist::result_type distVal = dist;
const int trainIdx = t * BLOCK_SIZE + threadIdx.x;
if (queryIdx < query.rows && trainIdx < train.rows && mask(queryIdx, trainIdx))
{
if (distVal < bestDistance1)
{
bestImgIdx2 = bestImgIdx1;
bestDistance2 = bestDistance1;
bestTrainIdx2 = bestTrainIdx1;
bestImgIdx1 = imgIdx;
bestDistance1 = distVal;
bestTrainIdx1 = trainIdx;
}
else if (distVal < bestDistance2)
{
bestImgIdx2 = imgIdx;
bestDistance2 = distVal;
bestTrainIdx2 = trainIdx;
}
}
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void match(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, int2* bestTrainIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
loop<BLOCK_SIZE, Dist>(queryIdx, query, 0, train, mask, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestTrainIdx1, myBestTrainIdx2);
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, s_distance, s_trainIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
const PtrStepSz<int2>& trainIdx, const PtrStepSz<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, trainIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void match(const PtrStepSz<T> query, const PtrStepSz<T>* trains, int n, const Mask mask, int2* bestTrainIdx, int2* bestImgIdx, float2* bestDistance)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.x * BLOCK_SIZE + threadIdx.y;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
float myBestDistance1 = numeric_limits<float>::max();
float myBestDistance2 = numeric_limits<float>::max();
int myBestTrainIdx1 = -1;
int myBestTrainIdx2 = -1;
int myBestImgIdx1 = -1;
int myBestImgIdx2 = -1;
Mask m = mask;
for (int imgIdx = 0; imgIdx < n; ++imgIdx)
{
const PtrStepSz<T> train = trains[imgIdx];
m.next();
loop<BLOCK_SIZE, Dist>(queryIdx, query, imgIdx, train, m, s_query, s_train, myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2);
}
__syncthreads();
float* s_distance = (float*)(smem);
int* s_trainIdx = (int*)(smem + BLOCK_SIZE * BLOCK_SIZE);
int* s_imgIdx = (int*)(smem + 2 * BLOCK_SIZE * BLOCK_SIZE);
findBestMatch<BLOCK_SIZE>(myBestDistance1, myBestDistance2, myBestTrainIdx1, myBestTrainIdx2, myBestImgIdx1, myBestImgIdx2, s_distance, s_trainIdx, s_imgIdx);
if (queryIdx < query.rows && threadIdx.x == 0)
{
bestTrainIdx[queryIdx] = make_int2(myBestTrainIdx1, myBestTrainIdx2);
bestImgIdx[queryIdx] = make_int2(myBestImgIdx1, myBestImgIdx2);
bestDistance[queryIdx] = make_float2(myBestDistance1, myBestDistance2);
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void match(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
const PtrStepSz<int2>& trainIdx, const PtrStepSz<int2>& imgIdx, const PtrStepSz<float2>& distance,
cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (3 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
match<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, trains, n, mask, trainIdx.data, imgIdx.data, distance.data);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// knnMatch 2 dispatcher
template <typename Dist, typename T, typename Mask>
void match2Dispatcher(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance,
int cc, cudaStream_t stream)
{
(void)cc;
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, Dist>(query, train, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, Dist>(query, train, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, train, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, train, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, train, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}*/
else
{
match<16, Dist>(query, train, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
}
template <typename Dist, typename T, typename Mask>
void match2Dispatcher(const PtrStepSz<T>& query, const PtrStepSz<T>* trains, int n, const Mask& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
int cc, cudaStream_t stream)
{
(void)cc;
if (query.cols <= 64)
{
matchUnrolledCached<16, 64, Dist>(query, trains, n, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<int2> >(imgIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
else if (query.cols <= 128)
{
matchUnrolledCached<16, 128, Dist>(query, trains, n, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<int2> >(imgIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
/*else if (query.cols <= 256)
{
matchUnrolled<16, 256, Dist>(query, trains, n, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<int2> >(imgIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
else if (query.cols <= 512)
{
matchUnrolled<16, 512, Dist>(query, trains, n, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<int2> >(imgIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
else if (query.cols <= 1024)
{
matchUnrolled<16, 1024, Dist>(query, trains, n, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<int2> >(imgIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}*/
else
{
match<16, Dist>(query, trains, n, mask, static_cast< PtrStepSz<int2> >(trainIdx), static_cast< PtrStepSz<int2> >(imgIdx), static_cast< PtrStepSz<float2> > (distance), stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
__global__ void calcDistanceUnrolled(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, PtrStepf allDist)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
Dist dist;
#pragma unroll
for (int i = 0; i < MAX_DESC_LEN / BLOCK_SIZE; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(::min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(::min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
if (queryIdx < query.rows && trainIdx < train.rows)
{
float distVal = numeric_limits<float>::max();
if (mask(queryIdx, trainIdx))
distVal = (typename Dist::result_type)dist;
allDist.ptr(queryIdx)[trainIdx] = distVal;
}
}
template <int BLOCK_SIZE, int MAX_DESC_LEN, typename Dist, typename T, typename Mask>
void calcDistanceUnrolled(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask, const PtrStepSzf& allDist, cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
calcDistanceUnrolled<BLOCK_SIZE, MAX_DESC_LEN, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, allDist);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
__global__ void calcDistance(const PtrStepSz<T> query, const PtrStepSz<T> train, const Mask mask, PtrStepf allDist)
{
extern __shared__ int smem[];
const int queryIdx = blockIdx.y * BLOCK_SIZE + threadIdx.y;
const int trainIdx = blockIdx.x * BLOCK_SIZE + threadIdx.x;
typename Dist::value_type* s_query = (typename Dist::value_type*)(smem);
typename Dist::value_type* s_train = (typename Dist::value_type*)(smem + BLOCK_SIZE * BLOCK_SIZE);
Dist dist;
for (int i = 0, endi = (query.cols + BLOCK_SIZE - 1) / BLOCK_SIZE; i < endi; ++i)
{
const int loadX = threadIdx.x + i * BLOCK_SIZE;
if (loadX < query.cols)
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = query.ptr(::min(queryIdx, query.rows - 1))[loadX];
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = train.ptr(::min(blockIdx.x * BLOCK_SIZE + threadIdx.y, train.rows - 1))[loadX];
}
else
{
s_query[threadIdx.y * BLOCK_SIZE + threadIdx.x] = 0;
s_train[threadIdx.x * BLOCK_SIZE + threadIdx.y] = 0;
}
__syncthreads();
#pragma unroll
for (int j = 0; j < BLOCK_SIZE; ++j)
dist.reduceIter(s_query[threadIdx.y * BLOCK_SIZE + j], s_train[j * BLOCK_SIZE + threadIdx.x]);
__syncthreads();
}
if (queryIdx < query.rows && trainIdx < train.rows)
{
float distVal = numeric_limits<float>::max();
if (mask(queryIdx, trainIdx))
distVal = (typename Dist::result_type)dist;
allDist.ptr(queryIdx)[trainIdx] = distVal;
}
}
template <int BLOCK_SIZE, typename Dist, typename T, typename Mask>
void calcDistance(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask, const PtrStepSzf& allDist, cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, BLOCK_SIZE);
const dim3 grid(divUp(train.rows, BLOCK_SIZE), divUp(query.rows, BLOCK_SIZE));
const size_t smemSize = (2 * BLOCK_SIZE * BLOCK_SIZE) * sizeof(int);
calcDistance<BLOCK_SIZE, Dist><<<grid, block, smemSize, stream>>>(query, train, mask, allDist);
cudaSafeCall( cudaGetLastError() );
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// Calc Distance dispatcher
template <typename Dist, typename T, typename Mask>
void calcDistanceDispatcher(const PtrStepSz<T>& query, const PtrStepSz<T>& train, const Mask& mask,
const PtrStepSzf& allDist,
int cc, cudaStream_t stream)
{
(void)cc;
if (query.cols <= 64)
{
calcDistanceUnrolled<16, 64, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 128)
{
calcDistanceUnrolled<16, 128, Dist>(query, train, mask, allDist, stream);
}
/*else if (query.cols <= 256)
{
calcDistanceUnrolled<16, 256, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 512)
{
calcDistanceUnrolled<16, 512, Dist>(query, train, mask, allDist, stream);
}
else if (query.cols <= 1024)
{
calcDistanceUnrolled<16, 1024, Dist>(query, train, mask, allDist, stream);
}*/
else
{
calcDistance<16, Dist>(query, train, mask, allDist, stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// find knn match kernel
template <int BLOCK_SIZE>
__global__ void findBestMatch(PtrStepSzf allDist, int i, PtrStepi trainIdx, PtrStepf distance)
{
const int SMEM_SIZE = BLOCK_SIZE > 64 ? BLOCK_SIZE : 64;
__shared__ float s_dist[SMEM_SIZE];
__shared__ int s_trainIdx[SMEM_SIZE];
const int queryIdx = blockIdx.x;
float* allDistRow = allDist.ptr(queryIdx);
float dist = numeric_limits<float>::max();
int bestIdx = -1;
for (int i = threadIdx.x; i < allDist.cols; i += BLOCK_SIZE)
{
float reg = allDistRow[i];
if (reg < dist)
{
dist = reg;
bestIdx = i;
}
}
s_dist[threadIdx.x] = dist;
s_trainIdx[threadIdx.x] = bestIdx;
__syncthreads();
reducePredVal<BLOCK_SIZE>(s_dist, dist, s_trainIdx, bestIdx, threadIdx.x, less<volatile float>());
if (threadIdx.x == 0)
{
if (dist < numeric_limits<float>::max())
{
allDistRow[bestIdx] = numeric_limits<float>::max();
trainIdx.ptr(queryIdx)[i] = bestIdx;
distance.ptr(queryIdx)[i] = dist;
}
}
}
template <int BLOCK_SIZE>
void findKnnMatch(int k, const PtrStepSzi& trainIdx, const PtrStepSzf& distance, const PtrStepSzf& allDist, cudaStream_t stream)
{
const dim3 block(BLOCK_SIZE, 1, 1);
const dim3 grid(trainIdx.rows, 1, 1);
for (int i = 0; i < k; ++i)
{
findBestMatch<BLOCK_SIZE><<<grid, block, 0, stream>>>(allDist, i, trainIdx, distance);
cudaSafeCall( cudaGetLastError() );
}
if (stream == 0)
cudaSafeCall( cudaDeviceSynchronize() );
}
void findKnnMatchDispatcher(int k, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream)
{
findKnnMatch<256>(k, static_cast<PtrStepSzi>(trainIdx), static_cast<PtrStepSzf>(distance), allDist, stream);
}
///////////////////////////////////////////////////////////////////////////////
// knn match Dispatcher
template <typename Dist, typename T, typename Mask>
void matchDispatcher(const PtrStepSz<T>& query, const PtrStepSz<T>& train, int k, const Mask& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
int cc, cudaStream_t stream)
{
if (k == 2)
{
match2Dispatcher<Dist>(query, train, mask, trainIdx, distance, cc, stream);
}
else
{
calcDistanceDispatcher<Dist>(query, train, mask, allDist, cc, stream);
findKnnMatchDispatcher(k, trainIdx, distance, allDist, cc, stream);
}
}
///////////////////////////////////////////////////////////////////////////////
// knn match caller
template <typename T> void matchL1_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
int cc, cudaStream_t stream)
{
if (mask.data)
matchDispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), k, SingleMask(mask), trainIdx, distance, allDist, cc, stream);
else
matchDispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), k, WithOutMask(), trainIdx, distance, allDist, cc, stream);
}
template void matchL1_gpu<uchar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchL1_gpu<schar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<ushort>(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<short >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<int >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchL1_gpu<float >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template <typename T> void matchL2_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
int cc, cudaStream_t stream)
{
if (mask.data)
matchDispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), k, SingleMask(mask), trainIdx, distance, allDist, cc, stream);
else
matchDispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), k, WithOutMask(), trainIdx, distance, allDist, cc, stream);
}
//template void matchL2_gpu<uchar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<schar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<ushort>(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<short >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchL2_gpu<int >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchL2_gpu<float >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template <typename T> void matchHamming_gpu(const PtrStepSzb& query, const PtrStepSzb& train, int k, const PtrStepSzb& mask,
const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist,
int cc, cudaStream_t stream)
{
if (mask.data)
matchDispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), k, SingleMask(mask), trainIdx, distance, allDist, cc, stream);
else
matchDispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), static_cast< PtrStepSz<T> >(train), k, WithOutMask(), trainIdx, distance, allDist, cc, stream);
}
template void matchHamming_gpu<uchar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchHamming_gpu<schar >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchHamming_gpu<ushort>(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
//template void matchHamming_gpu<short >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template void matchHamming_gpu<int >(const PtrStepSzb& queryDescs, const PtrStepSzb& trainDescs, int k, const PtrStepSzb& mask, const PtrStepSzb& trainIdx, const PtrStepSzb& distance, const PtrStepSzf& allDist, int cc, cudaStream_t stream);
template <typename T> void match2L1_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
int cc, cudaStream_t stream)
{
if (masks.data)
match2Dispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data), trainIdx, imgIdx, distance, cc, stream);
else
match2Dispatcher< L1Dist<T> >(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
}
template void match2L1_gpu<uchar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2L1_gpu<schar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<ushort>(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<short >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<int >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2L1_gpu<float >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template <typename T> void match2L2_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
int cc, cudaStream_t stream)
{
if (masks.data)
match2Dispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data), trainIdx, imgIdx, distance, cc, stream);
else
match2Dispatcher<L2Dist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
}
//template void match2L2_gpu<uchar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<schar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<ushort>(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<short >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2L2_gpu<int >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzi& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2L2_gpu<float >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template <typename T> void match2Hamming_gpu(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks,
const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance,
int cc, cudaStream_t stream)
{
if (masks.data)
match2Dispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, MaskCollection(masks.data), trainIdx, imgIdx, distance, cc, stream);
else
match2Dispatcher<HammingDist>(static_cast< PtrStepSz<T> >(query), (const PtrStepSz<T>*)trains.ptr(), trains.cols, WithOutMask(), trainIdx, imgIdx, distance, cc, stream);
}
template void match2Hamming_gpu<uchar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2Hamming_gpu<schar >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2Hamming_gpu<ushort>(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
//template void match2Hamming_gpu<short >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
template void match2Hamming_gpu<int >(const PtrStepSzb& query, const PtrStepSzb& trains, const PtrStepSz<PtrStepb>& masks, const PtrStepSzb& trainIdx, const PtrStepSzb& imgIdx, const PtrStepSzb& distance, int cc, cudaStream_t stream);
} // namespace bf_knnmatch
}}} // namespace cv { namespace gpu { namespace device {