1654 lines
61 KiB
TeX
1654 lines
61 KiB
TeX
\section{Feature detection and description}
|
|
|
|
\ifCPy
|
|
|
|
\ifPy
|
|
\cvclass{CvSURFPoint}
|
|
A SURF keypoint, represented as a tuple \texttt{((x, y), laplacian, size, dir, hessian)}.
|
|
|
|
\begin{description}
|
|
\cvarg{x}{x-coordinate of the feature within the image}
|
|
\cvarg{y}{y-coordinate of the feature within the image}
|
|
\cvarg{laplacian}{-1, 0 or +1. sign of the laplacian at the point. Can be used to speedup feature comparison since features with laplacians of different signs can not match}
|
|
\cvarg{size}{size of the feature}
|
|
\cvarg{dir}{orientation of the feature: 0..360 degrees}
|
|
\cvarg{hessian}{value of the hessian (can be used to approximately estimate the feature strengths; see also params.hessianThreshold)}
|
|
\end{description}
|
|
\fi
|
|
|
|
\cvCPyFunc{ExtractSURF}
|
|
Extracts Speeded Up Robust Features from an image.
|
|
|
|
\cvdefC{
|
|
void cvExtractSURF( \par const CvArr* image,\par const CvArr* mask,\par CvSeq** keypoints,\par CvSeq** descriptors,\par CvMemStorage* storage,\par CvSURFParams params );
|
|
}
|
|
\cvdefPy{ExtractSURF(image,mask,storage,params)-> (keypoints,descriptors)}
|
|
|
|
\begin{description}
|
|
\cvarg{image}{The input 8-bit grayscale image}
|
|
\cvarg{mask}{The optional input 8-bit mask. The features are only found in the areas that contain more than 50\% of non-zero mask pixels}
|
|
\ifC
|
|
\cvarg{keypoints}{The output parameter; double pointer to the sequence of keypoints. The sequence of CvSURFPoint structures is as follows:}
|
|
\begin{lstlisting}
|
|
typedef struct CvSURFPoint
|
|
{
|
|
CvPoint2D32f pt; // position of the feature within the image
|
|
int laplacian; // -1, 0 or +1. sign of the laplacian at the point.
|
|
// can be used to speedup feature comparison
|
|
// (normally features with laplacians of different
|
|
// signs can not match)
|
|
int size; // size of the feature
|
|
float dir; // orientation of the feature: 0..360 degrees
|
|
float hessian; // value of the hessian (can be used to
|
|
// approximately estimate the feature strengths;
|
|
// see also params.hessianThreshold)
|
|
}
|
|
CvSURFPoint;
|
|
\end{lstlisting}
|
|
\cvarg{descriptors}{The optional output parameter; double pointer to the sequence of descriptors. Depending on the params.extended value, each element of the sequence will be either a 64-element or a 128-element floating-point (\texttt{CV\_32F}) vector. If the parameter is NULL, the descriptors are not computed}
|
|
\else
|
|
\cvarg{keypoints}{sequence of keypoints.}
|
|
\cvarg{descriptors}{sequence of descriptors. Each SURF descriptor is a list of floats, of length 64 or 128.}
|
|
\fi
|
|
\cvarg{storage}{Memory storage where keypoints and descriptors will be stored}
|
|
\ifC
|
|
\cvarg{params}{Various algorithm parameters put to the structure CvSURFParams:}
|
|
\begin{lstlisting}
|
|
typedef struct CvSURFParams
|
|
{
|
|
int extended; // 0 means basic descriptors (64 elements each),
|
|
// 1 means extended descriptors (128 elements each)
|
|
double hessianThreshold; // only features with keypoint.hessian
|
|
// larger than that are extracted.
|
|
// good default value is ~300-500 (can depend on the
|
|
// average local contrast and sharpness of the image).
|
|
// user can further filter out some features based on
|
|
// their hessian values and other characteristics.
|
|
int nOctaves; // the number of octaves to be used for extraction.
|
|
// With each next octave the feature size is doubled
|
|
// (3 by default)
|
|
int nOctaveLayers; // The number of layers within each octave
|
|
// (4 by default)
|
|
}
|
|
CvSURFParams;
|
|
|
|
CvSURFParams cvSURFParams(double hessianThreshold, int extended=0);
|
|
// returns default parameters
|
|
\end{lstlisting}
|
|
\else
|
|
\cvarg{params}{Various algorithm parameters in a tuple \texttt{(extended, hessianThreshold, nOctaves, nOctaveLayers)}:
|
|
\begin{description}
|
|
\cvarg{extended}{0 means basic descriptors (64 elements each), 1 means extended descriptors (128 elements each)}
|
|
\cvarg{hessianThreshold}{only features with hessian larger than that are extracted. good default value is ~300-500 (can depend on the average local contrast and sharpness of the image). user can further filter out some features based on their hessian values and other characteristics.}
|
|
\cvarg{nOctaves}{the number of octaves to be used for extraction. With each next octave the feature size is doubled (3 by default)}
|
|
\cvarg{nOctaveLayers}{The number of layers within each octave (4 by default)}
|
|
\end{description}}
|
|
\fi
|
|
\end{description}
|
|
|
|
The function cvExtractSURF finds robust features in the image, as
|
|
described in \cite{Bay06}. For each feature it returns its location, size,
|
|
orientation and optionally the descriptor, basic or extended. The function
|
|
can be used for object tracking and localization, image stitching etc.
|
|
|
|
\ifC
|
|
See the
|
|
\texttt{find\_obj.cpp} demo in OpenCV samples directory.
|
|
\else
|
|
To extract strong SURF features from an image
|
|
|
|
\begin{lstlisting}
|
|
>>> import cv
|
|
>>> im = cv.LoadImageM("building.jpg", cv.CV_LOAD_IMAGE_GRAYSCALE)
|
|
>>> (keypoints, descriptors) = cv.ExtractSURF(im, None, cv.CreateMemStorage(), (0, 30000, 3, 1))
|
|
>>> print len(keypoints), len(descriptors)
|
|
6 6
|
|
>>> for ((x, y), laplacian, size, dir, hessian) in keypoints:
|
|
... print "x=\%d y=\%d laplacian=\%d size=\%d dir=\%f hessian=\%f" \% (x, y, laplacian, size, dir, hessian)
|
|
x=30 y=27 laplacian=-1 size=31 dir=69.778503 hessian=36979.789062
|
|
x=296 y=197 laplacian=1 size=33 dir=111.081039 hessian=31514.349609
|
|
x=296 y=266 laplacian=1 size=32 dir=107.092300 hessian=31477.908203
|
|
x=254 y=284 laplacian=1 size=31 dir=279.137360 hessian=34169.800781
|
|
x=498 y=525 laplacian=-1 size=33 dir=278.006592 hessian=31002.759766
|
|
x=777 y=281 laplacian=1 size=70 dir=167.940964 hessian=35538.363281
|
|
\end{lstlisting}
|
|
|
|
\fi
|
|
|
|
\cvCPyFunc{GetStarKeypoints}
|
|
Retrieves keypoints using the StarDetector algorithm.
|
|
|
|
\cvdefC{
|
|
CvSeq* cvGetStarKeypoints( \par const CvArr* image,\par CvMemStorage* storage,\par CvStarDetectorParams params=cvStarDetectorParams() );
|
|
}
|
|
\cvdefPy{GetStarKeypoints(image,storage,params)-> keypoints}
|
|
|
|
\begin{description}
|
|
\cvarg{image}{The input 8-bit grayscale image}
|
|
\cvarg{storage}{Memory storage where the keypoints will be stored}
|
|
\ifC
|
|
\cvarg{params}{Various algorithm parameters given to the structure CvStarDetectorParams:}
|
|
\begin{lstlisting}
|
|
typedef struct CvStarDetectorParams
|
|
{
|
|
int maxSize; // maximal size of the features detected. The following
|
|
// values of the parameter are supported:
|
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
|
|
int responseThreshold; // threshold for the approximatd laplacian,
|
|
// used to eliminate weak features
|
|
int lineThresholdProjected; // another threshold for laplacian to
|
|
// eliminate edges
|
|
int lineThresholdBinarized; // another threshold for the feature
|
|
// scale to eliminate edges
|
|
int suppressNonmaxSize; // linear size of a pixel neighborhood
|
|
// for non-maxima suppression
|
|
}
|
|
CvStarDetectorParams;
|
|
\end{lstlisting}
|
|
\else
|
|
\cvarg{params}{Various algorithm parameters in a tuple \texttt{(maxSize, responseThreshold, lineThresholdProjected, lineThresholdBinarized, suppressNonmaxSize)}:
|
|
\begin{description}
|
|
\cvarg{maxSize}{maximal size of the features detected. The following values of the parameter are supported: 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128}
|
|
\cvarg{responseThreshold}{threshold for the approximatd laplacian, used to eliminate weak features}
|
|
\cvarg{lineThresholdProjected}{another threshold for laplacian to eliminate edges}
|
|
\cvarg{lineThresholdBinarized}{another threshold for the feature scale to eliminate edges}
|
|
\cvarg{suppressNonmaxSize}{linear size of a pixel neighborhood for non-maxima suppression}
|
|
\end{description}
|
|
}
|
|
\fi
|
|
\end{description}
|
|
|
|
The function GetStarKeypoints extracts keypoints that are local
|
|
scale-space extremas. The scale-space is constructed by computing
|
|
approximate values of laplacians with different sigma's at each
|
|
pixel. Instead of using pyramids, a popular approach to save computing
|
|
time, all of the laplacians are computed at each pixel of the original
|
|
high-resolution image. But each approximate laplacian value is computed
|
|
in O(1) time regardless of the sigma, thanks to the use of integral
|
|
images. The algorithm is based on the paper
|
|
Agrawal08
|
|
, but instead
|
|
of a square, hexagon or octagon it uses an 8-end star shape, hence the name,
|
|
consisting of overlapping upright and tilted squares.
|
|
|
|
\ifC
|
|
Each computed feature is represented by the following structure:
|
|
|
|
\begin{lstlisting}
|
|
typedef struct CvStarKeypoint
|
|
{
|
|
CvPoint pt; // coordinates of the feature
|
|
int size; // feature size, see CvStarDetectorParams::maxSize
|
|
float response; // the approximated laplacian value at that point.
|
|
}
|
|
CvStarKeypoint;
|
|
|
|
inline CvStarKeypoint cvStarKeypoint(CvPoint pt, int size, float response);
|
|
\end{lstlisting}
|
|
\else
|
|
Each keypoint is represented by a tuple \texttt{((x, y), size, response)}:
|
|
\begin{description}
|
|
\cvarg{x, y}{Screen coordinates of the keypoint}
|
|
\cvarg{size}{feature size, up to \texttt{maxSize}}
|
|
\cvarg{response}{approximated laplacian value for the keypoint}
|
|
\end{description}
|
|
\fi
|
|
|
|
\ifC
|
|
Below is the small usage sample:
|
|
|
|
\begin{lstlisting}
|
|
#include "cv.h"
|
|
#include "highgui.h"
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
const char* filename = argc > 1 ? argv[1] : "lena.jpg";
|
|
IplImage* img = cvLoadImage( filename, 0 ), *cimg;
|
|
CvMemStorage* storage = cvCreateMemStorage(0);
|
|
CvSeq* keypoints = 0;
|
|
int i;
|
|
|
|
if( !img )
|
|
return 0;
|
|
cvNamedWindow( "image", 1 );
|
|
cvShowImage( "image", img );
|
|
cvNamedWindow( "features", 1 );
|
|
cimg = cvCreateImage( cvGetSize(img), 8, 3 );
|
|
cvCvtColor( img, cimg, CV_GRAY2BGR );
|
|
|
|
keypoints = cvGetStarKeypoints( img, storage, cvStarDetectorParams(45) );
|
|
|
|
for( i = 0; i < (keypoints ? keypoints->total : 0); i++ )
|
|
{
|
|
CvStarKeypoint kpt = *(CvStarKeypoint*)cvGetSeqElem(keypoints, i);
|
|
int r = kpt.size/2;
|
|
cvCircle( cimg, kpt.pt, r, CV_RGB(0,255,0));
|
|
cvLine( cimg, cvPoint(kpt.pt.x + r, kpt.pt.y + r),
|
|
cvPoint(kpt.pt.x - r, kpt.pt.y - r), CV_RGB(0,255,0));
|
|
cvLine( cimg, cvPoint(kpt.pt.x - r, kpt.pt.y + r),
|
|
cvPoint(kpt.pt.x + r, kpt.pt.y - r), CV_RGB(0,255,0));
|
|
}
|
|
cvShowImage( "features", cimg );
|
|
cvWaitKey();
|
|
}
|
|
\end{lstlisting}
|
|
\fi
|
|
|
|
\fi
|
|
\ifCpp
|
|
|
|
\cvclass{KeyPoint}
|
|
Data structure for salient point detectors
|
|
|
|
\begin{lstlisting}
|
|
class KeyPoint
|
|
{
|
|
public:
|
|
// the default constructor
|
|
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0),
|
|
class_id(-1) {}
|
|
// the full constructor
|
|
KeyPoint(Point2f _pt, float _size, float _angle=-1,
|
|
float _response=0, int _octave=0, int _class_id=-1)
|
|
: pt(_pt), size(_size), angle(_angle), response(_response),
|
|
octave(_octave), class_id(_class_id) {}
|
|
// another form of the full constructor
|
|
KeyPoint(float x, float y, float _size, float _angle=-1,
|
|
float _response=0, int _octave=0, int _class_id=-1)
|
|
: pt(x, y), size(_size), angle(_angle), response(_response),
|
|
octave(_octave), class_id(_class_id) {}
|
|
// converts vector of keypoints to vector of points
|
|
static void convert(const std::vector<KeyPoint>& keypoints,
|
|
std::vector<Point2f>& points2f,
|
|
const std::vector<int>& keypointIndexes=std::vector<int>());
|
|
// converts vector of points to the vector of keypoints, where each
|
|
// keypoint is assigned the same size and the same orientation
|
|
static void convert(const std::vector<Point2f>& points2f,
|
|
std::vector<KeyPoint>& keypoints,
|
|
float size=1, float response=1, int octave=0,
|
|
int class_id=-1);
|
|
|
|
// computes overlap for pair of keypoints;
|
|
// overlap is a ratio between area of keypoint regions intersection and
|
|
// area of keypoint regions union (now keypoint region is circle)
|
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
|
|
|
|
Point2f pt; // coordinates of the keypoints
|
|
float size; // diameter of the meaningfull keypoint neighborhood
|
|
float angle; // computed orientation of the keypoint (-1 if not applicable)
|
|
float response; // the response by which the most strong keypoints
|
|
// have been selected. Can be used for the further sorting
|
|
// or subsampling
|
|
int octave; // octave (pyramid layer) from which the keypoint has been extracted
|
|
int class_id; // object class (if the keypoints need to be clustered by
|
|
// an object they belong to)
|
|
};
|
|
|
|
// writes vector of keypoints to the file storage
|
|
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
|
|
// reads vector of keypoints from the specified file storage node
|
|
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
|
|
\end{lstlisting}
|
|
|
|
|
|
\cvclass{MSER}
|
|
Maximally-Stable Extremal Region Extractor
|
|
|
|
\begin{lstlisting}
|
|
class MSER : public CvMSERParams
|
|
{
|
|
public:
|
|
// default constructor
|
|
MSER();
|
|
// constructor that initializes all the algorithm parameters
|
|
MSER( int _delta, int _min_area, int _max_area,
|
|
float _max_variation, float _min_diversity,
|
|
int _max_evolution, double _area_threshold,
|
|
double _min_margin, int _edge_blur_size );
|
|
// runs the extractor on the specified image; returns the MSERs,
|
|
// each encoded as a contour (vector<Point>, see findContours)
|
|
// the optional mask marks the area where MSERs are searched for
|
|
void operator()( const Mat& image, vector<vector<Point> >& msers, const Mat& mask ) const;
|
|
};
|
|
\end{lstlisting}
|
|
|
|
The class encapsulates all the parameters of MSER (see \url{http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions}) extraction algorithm.
|
|
|
|
\cvclass{StarDetector}
|
|
Implements Star keypoint detector
|
|
|
|
\begin{lstlisting}
|
|
class StarDetector : CvStarDetectorParams
|
|
{
|
|
public:
|
|
// default constructor
|
|
StarDetector();
|
|
// the full constructor initialized all the algorithm parameters:
|
|
// maxSize - maximum size of the features. The following
|
|
// values of the parameter are supported:
|
|
// 4, 6, 8, 11, 12, 16, 22, 23, 32, 45, 46, 64, 90, 128
|
|
// responseThreshold - threshold for the approximated laplacian,
|
|
// used to eliminate weak features. The larger it is,
|
|
// the less features will be retrieved
|
|
// lineThresholdProjected - another threshold for the laplacian to
|
|
// eliminate edges
|
|
// lineThresholdBinarized - another threshold for the feature
|
|
// size to eliminate edges.
|
|
// The larger the 2 threshold, the more points you get.
|
|
StarDetector(int maxSize, int responseThreshold,
|
|
int lineThresholdProjected,
|
|
int lineThresholdBinarized,
|
|
int suppressNonmaxSize);
|
|
|
|
// finds keypoints in an image
|
|
void operator()(const Mat& image, vector<KeyPoint>& keypoints) const;
|
|
};
|
|
\end{lstlisting}
|
|
|
|
The class implements a modified version of CenSurE keypoint detector described in
|
|
\cite{Agrawal08}
|
|
|
|
\cvclass{SIFT}
|
|
Class for extracting keypoints and computing descriptors using approach named Scale Invariant Feature Transform (SIFT).
|
|
|
|
\begin{lstlisting}
|
|
class CV_EXPORTS SIFT
|
|
{
|
|
public:
|
|
struct CommonParams
|
|
{
|
|
static const int DEFAULT_NOCTAVES = 4;
|
|
static const int DEFAULT_NOCTAVE_LAYERS = 3;
|
|
static const int DEFAULT_FIRST_OCTAVE = -1;
|
|
enum{ FIRST_ANGLE = 0, AVERAGE_ANGLE = 1 };
|
|
|
|
CommonParams();
|
|
CommonParams( int _nOctaves, int _nOctaveLayers, int _firstOctave,
|
|
int _angleMode );
|
|
int nOctaves, nOctaveLayers, firstOctave;
|
|
int angleMode;
|
|
};
|
|
|
|
struct DetectorParams
|
|
{
|
|
static double GET_DEFAULT_THRESHOLD()
|
|
{ return 0.04 / SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS / 2.0; }
|
|
static double GET_DEFAULT_EDGE_THRESHOLD() { return 10.0; }
|
|
|
|
DetectorParams();
|
|
DetectorParams( double _threshold, double _edgeThreshold );
|
|
double threshold, edgeThreshold;
|
|
};
|
|
|
|
struct DescriptorParams
|
|
{
|
|
static double GET_DEFAULT_MAGNIFICATION() { return 3.0; }
|
|
static const bool DEFAULT_IS_NORMALIZE = true;
|
|
static const int DESCRIPTOR_SIZE = 128;
|
|
|
|
DescriptorParams();
|
|
DescriptorParams( double _magnification, bool _isNormalize,
|
|
bool _recalculateAngles );
|
|
double magnification;
|
|
bool isNormalize;
|
|
bool recalculateAngles;
|
|
};
|
|
|
|
SIFT();
|
|
//! sift-detector constructor
|
|
SIFT( double _threshold, double _edgeThreshold,
|
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
|
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int _angleMode=CommonParams::FIRST_ANGLE );
|
|
//! sift-descriptor constructor
|
|
SIFT( double _magnification, bool _isNormalize=true,
|
|
bool _recalculateAngles = true,
|
|
int _nOctaves=CommonParams::DEFAULT_NOCTAVES,
|
|
int _nOctaveLayers=CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int _firstOctave=CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int _angleMode=CommonParams::FIRST_ANGLE );
|
|
SIFT( const CommonParams& _commParams,
|
|
const DetectorParams& _detectorParams = DetectorParams(),
|
|
const DescriptorParams& _descriptorParams = DescriptorParams() );
|
|
|
|
//! returns the descriptor size in floats (128)
|
|
int descriptorSize() const { return DescriptorParams::DESCRIPTOR_SIZE; }
|
|
//! finds the keypoints using SIFT algorithm
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints) const;
|
|
//! finds the keypoints and computes descriptors for them using SIFT algorithm.
|
|
//! Optionally it can compute descriptors for the user-provided keypoints
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints,
|
|
Mat& descriptors,
|
|
bool useProvidedKeypoints=false) const;
|
|
|
|
CommonParams getCommonParams () const { return commParams; }
|
|
DetectorParams getDetectorParams () const { return detectorParams; }
|
|
DescriptorParams getDescriptorParams () const { return descriptorParams; }
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{SURF}
|
|
Class for extracting Speeded Up Robust Features from an image.
|
|
|
|
\begin{lstlisting}
|
|
class SURF : public CvSURFParams
|
|
{
|
|
public:
|
|
// default constructor
|
|
SURF();
|
|
// constructor that initializes all the algorithm parameters
|
|
SURF(double _hessianThreshold, int _nOctaves=4,
|
|
int _nOctaveLayers=2, bool _extended=false);
|
|
// returns the number of elements in each descriptor (64 or 128)
|
|
int descriptorSize() const;
|
|
// detects keypoints using fast multi-scale Hessian detector
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints) const;
|
|
// detects keypoints and computes the SURF descriptors for them
|
|
void operator()(const Mat& img, const Mat& mask,
|
|
vector<KeyPoint>& keypoints,
|
|
vector<float>& descriptors,
|
|
bool useProvidedKeypoints=false) const;
|
|
};
|
|
\end{lstlisting}
|
|
|
|
The class \texttt{SURF} implements Speeded Up Robust Features descriptor \cite{Bay06}.
|
|
There is fast multi-scale Hessian keypoint detector that can be used to find the keypoints
|
|
(which is the default option), but the descriptors can be also computed for the user-specified keypoints.
|
|
The function can be used for object tracking and localization, image stitching etc. See the
|
|
\texttt{find\_obj.cpp} demo in OpenCV samples directory.
|
|
|
|
\section{Common Interfaces for Feature Detection and Descriptor Extraction}
|
|
Both detectors and descriptors in OpenCV have wrappers with common interface that enables to switch easily
|
|
between different algorithms solving the same problem. All objects that implement keypoint detectors inherit
|
|
FeatureDetector interface. Descriptors that are represented as vectors in a multidimensional space can be
|
|
computed with DescriptorExtractor interface. DescriptorMatcher interface can be used to find matches between
|
|
two sets of descriptors. GenericDescriptorMatcher is a more generic interface for descriptors. It does not make any
|
|
assumptions about descriptor representation. Every descriptor with DescriptorExtractor interface has a wrapper with
|
|
GenericDescriptorMatcher interface (see VectorDescriptorMatch). There are descriptors such as one way descriptor and
|
|
ferns that have GenericDescriptorMatcher interface implemented, but do not support DescriptorExtractor.
|
|
|
|
\cvclass{FeatureDetector}
|
|
Abstract base class for 2D image feature detectors.
|
|
|
|
\begin{lstlisting}
|
|
class CV_EXPORTS FeatureDetector
|
|
{
|
|
public:
|
|
virtual ~FeatureDetector() {}
|
|
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const = 0;
|
|
|
|
void detect( const vector<Mat>& imageCollection,
|
|
vector<vector<KeyPoint> >& pointCollection,
|
|
const vector<Mat>& masks=vector<Mat>() ) const;
|
|
|
|
virtual void read(const FileNode&) {}
|
|
virtual void write(FileStorage&) const {}
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{FeatureDetector::detect}
|
|
Detect keypoints in an image (first variant) or image set (second variant).
|
|
|
|
\cvdefCpp{
|
|
void FeatureDetector::detect( const Mat\& image,
|
|
\par vector<KeyPoint>\& keypoints,
|
|
\par const Mat\& mask=Mat() ) const;\\
|
|
void FeatureDetector::detect( const vector<Mat>\& imageCollection,
|
|
\par vector<vector<KeyPoint> >\& pointCollection,
|
|
\par const vector<Mat>\& masks=vector<Mat>() ) const;
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{image}{The image.}
|
|
\cvarg{keypoints}{The detected keypoints.}
|
|
\cvarg{mask}{Mask specifying where to look for keypoints (optional). Must be a char matrix
|
|
with non-zero values in the region of interest.}
|
|
\end{description}
|
|
|
|
\begin{description}
|
|
\cvarg{imageCollection}{Image collection.}
|
|
\cvarg{pointCollection}{Collection of keypoints detected in an input images.}
|
|
\cvarg{masks}{Masks for each input image specifying where to look for keypoints (optional).
|
|
Each element of \texttt{masks} vector must be a char matrix with non-zero values in the region of interest.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{FeatureDetector::read}
|
|
Read feature detector from file node.
|
|
|
|
\cvdefCpp{
|
|
void FeatureDetector::read( const FileNode\& fn );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{fn}{File node from which detector will be read.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{FeatureDetector::write}
|
|
Write feature detector to file storage.
|
|
|
|
\cvdefCpp{
|
|
void FeatureDetector::write( FileStorage\& fs ) const;
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{fs}{File storage in which detector will be written.}
|
|
\end{description}
|
|
|
|
\cvclass{FastFeatureDetector}
|
|
Wrapping class for feature detection using \cvCppCross{FAST} method.
|
|
|
|
\begin{lstlisting}
|
|
class FastFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
FastFeatureDetector( int _threshold=1, bool _nonmaxSuppression=true );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{GoodFeaturesToTrackDetector}
|
|
Wrapping class for feature detection using \cvCppCross{goodFeaturesToTrack} method.
|
|
|
|
\begin{lstlisting}
|
|
class GoodFeaturesToTrackDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
GoodFeaturesToTrackDetector( int _maxCorners, double _qualityLevel,
|
|
double _minDistance, int _blockSize=3,
|
|
bool _useHarrisDetector=false, double _k=0.04 );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{MserFeatureDetector}
|
|
Wrapping class for feature detection using \cvCppCross{MSER} class.
|
|
|
|
\begin{lstlisting}
|
|
class MserFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
MserFeatureDetector( CvMSERParams params=cvMSERParams () );
|
|
MserFeatureDetector( int delta, int minArea, int maxArea,
|
|
double maxVariation, double minDiversity,
|
|
int maxEvolution, double areaThreshold,
|
|
double minMargin, int edgeBlurSize );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{StarFeatureDetector}
|
|
Wrapping class for feature detection using \cvCppCross{StarDetector} class.
|
|
|
|
\begin{lstlisting}
|
|
class StarFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
|
|
int lineThresholdProjected = 10,
|
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{SiftFeatureDetector}
|
|
Wrapping class for feature detection using \cvCppCross{SIFT} class.
|
|
|
|
\begin{lstlisting}
|
|
class SiftFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
SiftFeatureDetector( double threshold=SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(),
|
|
double edgeThreshold=SIFT::DetectorParams::GET_DEFAULT_EDGE_THRESHOLD(),
|
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{SurfFeatureDetector}
|
|
Wrapping class for feature detection using \cvCppCross{SURF} class.
|
|
|
|
\begin{lstlisting}
|
|
class SurfFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
|
|
int octaveLayers = 4 );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{GridAdaptedFeatureDetector}
|
|
Adapts a detector to partition the source image into a grid and detect
|
|
points in each cell.
|
|
|
|
\begin{lstlisting}
|
|
class GridAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
/*
|
|
* detector Detector that will be adapted.
|
|
* maxTotalKeypoints Maximum count of keypoints detected on the image.
|
|
* Only the strongest keypoints will be keeped.
|
|
* gridRows Grid rows count.
|
|
* gridCols Grid column count.
|
|
*/
|
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int maxTotalKeypoints, int gridRows=4,
|
|
int gridCols=4 );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
// todo read/write
|
|
virtual void read( const FileNode& fn ) {}
|
|
virtual void write( FileStorage& fs ) const {}
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{PyramidAdaptedFeatureDetector}
|
|
Adapts a detector to detect points over multiple levels of a Gaussian
|
|
pyramid. Useful for detectors that are not inherently scaled.
|
|
|
|
\begin{lstlisting}
|
|
class PyramidAdaptedFeatureDetector : public FeatureDetector
|
|
{
|
|
public:
|
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
int levels=2 );
|
|
virtual void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
// todo read/write
|
|
virtual void read( const FileNode& fn ) {}
|
|
virtual void write( FileStorage& fs ) const {}
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{createFeatureDetector}
|
|
Feature detector factory that creates \cvCppCross{FeatureDetector} of given type with
|
|
default parameters (rather using default constructor).
|
|
|
|
\begin{lstlisting}
|
|
Ptr<FeatureDetector> createFeatureDetector( const string& detectorType );
|
|
\end{lstlisting}
|
|
|
|
\begin{description}
|
|
\cvarg{detectorType}{Feature detector type, e.g. ''SURF'', ''FAST'', ...}
|
|
\end{description}
|
|
|
|
\cvclass{DescriptorExtractor}
|
|
Abstract base class for computing descriptors for image keypoints.
|
|
|
|
\begin{lstlisting}
|
|
class CV_EXPORTS DescriptorExtractor
|
|
{
|
|
public:
|
|
virtual ~DescriptorExtractor() {}
|
|
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
|
|
Mat& descriptors ) const = 0;
|
|
|
|
void compute( const vector<Mat>& imageCollection,
|
|
vector<vector<KeyPoint> >& pointCollection,
|
|
vector<Mat>& descCollection ) const;
|
|
|
|
virtual void read( const FileNode& ) {}
|
|
virtual void write( FileStorage& ) const {}
|
|
|
|
virtual int descriptorSize() const = 0;
|
|
virtual int descriptorType() const = 0;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
In this interface we assume a keypoint descriptor can be represented as a
|
|
dense, fixed-dimensional vector of some basic type. Most descriptors used
|
|
in practice follow this pattern, as it makes it very easy to compute
|
|
distances between descriptors. Therefore we represent a collection of
|
|
descriptors as a \cvCppCross{Mat}, where each row is one keypoint descriptor.
|
|
|
|
\cvCppFunc{DescriptorExtractor::compute}
|
|
Compute the descriptors for a set of keypoints detected in an image or image collection.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorExtractor::compute( const Mat\& image,
|
|
\par vector<KeyPoint>\& keypoints,
|
|
\par Mat\& descriptors ) const;\\
|
|
void DescriptorExtractor::compute( const vector<Mat>\& imageCollection,
|
|
\par vector<vector<KeyPoint> >\& pointCollection,
|
|
\par vector<Mat>\& descCollection ) const;
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{image}{The image.}
|
|
\cvarg{keypoints}{The keypoints. Keypoints for which a descriptor cannot be computed are removed.}
|
|
\cvarg{descriptors}{The descriptors. Row i is the descriptor for keypoint i.}
|
|
\end{description}
|
|
|
|
\begin{description}
|
|
\cvarg{imageCollection}{Image collection.}
|
|
\cvarg{pointCollection}{Keypoints collection. pointCollection[i] is keypoints
|
|
detected in imageCollection[i]. Keypoints for which a descriptor
|
|
cannot be computed are removed.}
|
|
\cvarg{descCollection}{Descriptor collection. descCollection[i] is descriptors
|
|
computed for pointCollection[i].}
|
|
\end{description}
|
|
|
|
\cvCppFunc{DescriptorExtractor::read}
|
|
Read descriptor extractor from file node.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorExtractor::read( const FileNode\& fn );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{fn}{File node from which detector will be read.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{DescriptorExtractor::write}
|
|
Write descriptor extractor to file storage.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorExtractor::write( FileStorage\& fs ) const;
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{fs}{File storage in which detector will be written.}
|
|
\end{description}
|
|
|
|
|
|
\cvclass{SiftDescriptorExtractor}
|
|
Wrapping class for descriptors computing using \cvCppCross{SIFT} class.
|
|
|
|
\begin{lstlisting}
|
|
class SiftDescriptorExtractor : public DescriptorExtractor
|
|
{
|
|
public:
|
|
SiftDescriptorExtractor(
|
|
double magnification=SIFT::DescriptorParams::GET_DEFAULT_MAGNIFICATION(),
|
|
bool isNormalize=true, bool recalculateAngles=true,
|
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
|
|
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
|
|
Mat& descriptors) const;
|
|
|
|
virtual void read (const FileNode &fn);
|
|
virtual void write (FileStorage &fs) const;
|
|
virtual int descriptorSize() const;
|
|
virtual int descriptorType() const;
|
|
protected:
|
|
...
|
|
}
|
|
\end{lstlisting}
|
|
|
|
\cvclass{SurfDescriptorExtractor}
|
|
Wrapping class for descriptors computing using \cvCppCross{SURF} class.
|
|
|
|
\begin{lstlisting}
|
|
class SurfDescriptorExtractor : public DescriptorExtractor
|
|
{
|
|
public:
|
|
SurfDescriptorExtractor( int nOctaves=4,
|
|
int nOctaveLayers=2, bool extended=false );
|
|
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
|
|
Mat& descriptors) const;
|
|
|
|
virtual void read (const FileNode &fn);
|
|
virtual void write (FileStorage &fs) const;
|
|
virtual int descriptorSize() const;
|
|
virtual int descriptorType() const;
|
|
protected:
|
|
...
|
|
}
|
|
\end{lstlisting}
|
|
|
|
\cvclass{CalonderDescriptorExtractor}
|
|
Wrapping class for descriptors computing using \cvCppCross{RTreeClassifier} class.
|
|
|
|
\begin{lstlisting}
|
|
template<typename T>
|
|
class CalonderDescriptorExtractor : public DescriptorExtractor
|
|
{
|
|
public:
|
|
CalonderDescriptorExtractor( const string& classifierFile );
|
|
virtual void compute( const Mat& image, vector<KeyPoint>& keypoints,
|
|
Mat& descriptors ) const;
|
|
|
|
virtual void read( const FileNode &fn );
|
|
virtual void write( FileStorage &fs ) const;
|
|
virtual int descriptorSize() const;
|
|
virtual int descriptorType() const;
|
|
protected:
|
|
...
|
|
}
|
|
\end{lstlisting}
|
|
|
|
\cvclass{DMatch}
|
|
Match between two keypoint descriptors: query descriptor index,
|
|
train descriptor index, train image index and distance between descriptors.
|
|
|
|
\begin{lstlisting}
|
|
struct DMatch
|
|
{
|
|
DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1),
|
|
distance(std::numeric_limits<float>::max()) {}
|
|
DMatch( int _queryIdx, int _trainIdx, float _distance ) :
|
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1),
|
|
distance(_distance) {}
|
|
DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
|
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx),
|
|
distance(_distance) {}
|
|
|
|
int queryIdx; // query descriptor index
|
|
int trainIdx; // train descriptor index
|
|
int imgIdx; // train image index
|
|
|
|
float distance;
|
|
|
|
// less is better
|
|
bool operator<( const DMatch &m) const;
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{DescriptorMatcher}
|
|
Abstract base class for matching keypoint descriptors. It has two groups
|
|
of match methods: for matching descriptors of one image with other image or
|
|
with image set.
|
|
|
|
\begin{lstlisting}
|
|
class DescriptorMatcher
|
|
{
|
|
public:
|
|
virtual ~DescriptorMatcher() {}
|
|
|
|
virtual void add( const vector<Mat>& descCollection );
|
|
const vector<Mat>& getTrainDescCollection() const;
|
|
virtual void clear();
|
|
virtual bool supportMask() = 0;
|
|
|
|
virtual void train() = 0;
|
|
/*
|
|
* Group of methods to match descriptors from image pair.
|
|
*/
|
|
void match( const Mat& queryDescs, const Mat& trainDescs,
|
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const;
|
|
void knnMatch( const Mat& queryDescs, const Mat& trainDescs,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
void radiusMatch( const Mat& queryDescs, const Mat& trainDescs,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
/*
|
|
* Group of methods to match descriptors from one image to image set.
|
|
*/
|
|
void match( const Mat& queryDescs, vector<DMatch>& matches,
|
|
const vector<Mat>& masks=vector<Mat>() );
|
|
void knnMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches,
|
|
int knn, const vector<Mat>& masks=vector<Mat>(),
|
|
bool compactResult=false );
|
|
void radiusMatch( const Mat& queryDescs, vector<vector<DMatch> >& matches,
|
|
float maxDistance, const vector<Mat>& masks=vector<Mat>(),
|
|
bool compactResult=false );
|
|
|
|
virtual void read( const FileNode& ) {}
|
|
virtual void write( FileStorage& ) const {}
|
|
|
|
protected:
|
|
|
|
vector<Mat> trainDescCollection;
|
|
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{DescriptorMatcher::add}
|
|
Add descriptors to train descriptor collection. If collection \texttt{trainDescCollection} is not empty
|
|
the new descriptors are added to existing train descriptors.
|
|
|
|
\cvdefCpp{
|
|
void add( const vector<Mat>\& descCollection );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{descCollection}{Descriptors to add. Each \texttt{trainDescCollection[i]} is from the same train image.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{DescriptorMatcher::getTrainDescCollection}
|
|
Returns constant link to the train descriptor collection (i.e. \texttt{trainDescCollection}).
|
|
|
|
\cvdefCpp{
|
|
const vector<Mat>\& getTrainDescCollection() const;
|
|
}
|
|
|
|
\cvCppFunc{DescriptorMatcher::clear}
|
|
Clear train descriptor collection.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::clear();
|
|
}
|
|
|
|
\cvCppFunc{DescriptorMatcher::supportMask}
|
|
Returns true if descriptor matcher supports masking permissible matches.
|
|
|
|
\cvdefCpp{
|
|
bool DescriptorMatcher::supportMask();
|
|
}
|
|
|
|
\cvCppFunc{DescriptorMatcher::train}
|
|
Train descriptor matcher (e.g. train flann index).
|
|
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::train();
|
|
}
|
|
|
|
\cvCppFunc{DescriptorMatcher::match}
|
|
Find the best match for each descriptor from a query set with train descriptors.
|
|
Supposed that the query descriptors are of keypoints detected on the same query image.
|
|
In first variant of this method train descriptors are set as input argument and
|
|
supposed that they are of keypoints detected on the same train image. In second variant
|
|
of the method train descriptors collection that was set using \texttt{add} method is used.
|
|
Optional mask (or masks) can be set to describe which descriptors can be matched.
|
|
\texttt{descriptors\_1[i]} can be matched with \texttt{descriptors\_2[j]} only if \texttt{mask.at<uchar>(i,j)} is non-zero.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::match( const Mat\& queryDescs,
|
|
\par const Mat\& trainDescs,
|
|
\par vector<DMatch>\& matches,
|
|
\par const Mat\& mask=Mat() ) const;
|
|
}
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::match( const Mat\& queryDescs,
|
|
\par vector<DMatch>\& matches,
|
|
\par const vector<Mat>\& masks=vector<Mat>() );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{queryDescs}{Query set of descriptors.}
|
|
\cvarg{trainDescs}{Train set of descriptors.}
|
|
\cvarg{matches}{Matches. If some query descriptor masked out in \texttt{mask} no match will be added for this descriptor.
|
|
So \texttt{matches} size may be less query descriptors count.}
|
|
\cvarg{mask}{Mask specifying permissible matches between input query and train matrices of descriptors.}
|
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query descriptors
|
|
and stored train descriptors from i-th image (i.e. \texttt{trainDescCollection[i])}.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{DescriptorMatcher::knnMatch}
|
|
Find the knn best matches for each descriptor from a query set with train descriptors.
|
|
Found knn (or less if not possible) matches are returned in distance increasing order.
|
|
Details about query and train descriptors see in \cvCppCross{DescriptorMatcher::match}.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescs,
|
|
\par const Mat\& trainDescs, vector<vector<DMatch> >\& matches,
|
|
\par int knn, const Mat\& mask=Mat(),
|
|
\par bool compactResult=false ) const;
|
|
}
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescs,
|
|
\par vector<vector<DMatch> >\& matches, int knn,
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
\par bool compactResult=false );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{queryDescs, trainDescs, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.}
|
|
\cvarg{matches}{Mathes. Each \texttt{matches[i]} is knn or less matches for the same query descriptor.}
|
|
\cvarg{knn}{Count of best matches will be found per each query descriptor (or less if it's not possible).}
|
|
\cvarg{compactResult}{It's used when mask (or masks) is not empty. If \texttt{compactResult} is false
|
|
\texttt{matches} vector will have the same size as \texttt{queryDescs} rows. If \texttt{compactResult}
|
|
is true \texttt{matches} vector will not contain matches for fully masked out query descriptors.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{DescriptorMatcher::radiusMatch}
|
|
Find the best matches for each query descriptor which have distance less than given threshold.
|
|
Found matches are returned in distance increasing order. Details about query and train
|
|
descriptors see in \cvCppCross{DescriptorMatcher::match}.
|
|
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescs,
|
|
\par const Mat\& trainDescs, vector<vector<DMatch> >\& matches,
|
|
\par float maxDistance, const Mat\& mask=Mat(),
|
|
\par bool compactResult=false ) const;
|
|
}
|
|
\cvdefCpp{
|
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescs,
|
|
\par vector<vector<DMatch> >\& matches, float maxDistance,
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
\par bool compactResult=false );
|
|
}
|
|
\begin{description}
|
|
\cvarg{queryDescs, trainDescs, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.}
|
|
\cvarg{matches, compactResult}{See in \cvCppCross{DescriptorMatcher::knnMatch}.}
|
|
\cvarg{maxDistance}{The threshold to found match distances.}
|
|
\end{description}
|
|
|
|
\cvclass{BruteForceMatcher}
|
|
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest
|
|
descriptor in the second set by trying each one. This descriptor matcher supports masking
|
|
permissible matches between descriptor sets.
|
|
|
|
\begin{lstlisting}
|
|
template<class Distance>
|
|
class BruteForceMatcher : public DescriptorMatcher
|
|
{
|
|
public:
|
|
BruteForceMatcher( Distance d = Distance() ) : distance(d) {}
|
|
virtual ~BruteForceMatcher() {}
|
|
|
|
virtual void train() {}
|
|
virtual bool supportMask() { return true; }
|
|
|
|
protected:
|
|
...
|
|
}
|
|
\end{lstlisting}
|
|
|
|
For efficiency, BruteForceMatcher is templated on the distance metric.
|
|
For float descriptors, a common choice would be \texttt{L2<float>}. Class \texttt{L2} is defined as:
|
|
\begin{lstlisting}
|
|
template<typename T>
|
|
struct Accumulator
|
|
{
|
|
typedef T Type;
|
|
};
|
|
|
|
template<> struct Accumulator<unsigned char> { typedef unsigned int Type; };
|
|
template<> struct Accumulator<unsigned short> { typedef unsigned int Type; };
|
|
template<> struct Accumulator<char> { typedef int Type; };
|
|
template<> struct Accumulator<short> { typedef int Type; };
|
|
|
|
/*
|
|
* Squared Euclidean distance functor
|
|
*/
|
|
template<class T>
|
|
struct L2
|
|
{
|
|
typedef T ValueType;
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const;
|
|
{
|
|
ResultType result = ResultType();
|
|
for( int i = 0; i < size; i++ )
|
|
{
|
|
ResultType diff = a[i] - b[i];
|
|
result += diff*diff;
|
|
}
|
|
return sqrt(result);
|
|
}
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{FlannBasedMatcher}
|
|
Flann based descriptor matcher. This matcher trains \cvCppCross{flann::Index} on
|
|
train descriptor collection and calls it's nearest search methods to find best matches.
|
|
So this matcher may be faster in cases of matching to large train collection than
|
|
brute force matcher. \texttt{FlannBasedMatcher} does not support masking permissible
|
|
matches between descriptor sets, because \cvCppCross{flann::Index} does not
|
|
support this.
|
|
|
|
\begin{lstlisting}
|
|
class FlannBasedMatcher : public DescriptorMatcher
|
|
{
|
|
public:
|
|
FlannBasedMatcher(
|
|
const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
|
|
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
|
|
|
|
virtual void add( const vector<Mat>& descCollection );
|
|
virtual void clear();
|
|
|
|
virtual void train();
|
|
virtual bool supportMask() { return false; }
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{createDescriptorMatcher}
|
|
Descriptor matcher factory that creates \cvCppCross{DescriptorMatcher} of
|
|
given type with default parameters (rather using default constructor).
|
|
|
|
\begin{lstlisting}
|
|
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType );
|
|
\end{lstlisting}
|
|
|
|
\begin{description}
|
|
\cvarg{descriptorMatcherType}{Descriptor matcher type, e. g. ''BruteForce'', ''FlannBased'', ...}
|
|
\end{description}
|
|
|
|
\cvclass{GenericDescriptorMatcher}
|
|
Abstract interface for a keypoint descriptor extracting and matching.
|
|
There is \cvCppCross{DescriptorExtractor} and \cvCppCross{DescriptorMatcher}
|
|
for these purposes too, but their interfaces are intended for descriptors
|
|
represented as vectors in a multidimensional space. \texttt{GenericDescriptorMatcher}
|
|
is a more generic interface for descriptors.
|
|
As \cvCppCross{DescriptorMatcher}, \texttt{GenericDescriptorMatcher} has two groups
|
|
of match methods: for matching keypoints of one image with other image or
|
|
with image set.
|
|
|
|
\begin{lstlisting}
|
|
class GenericDescriptorMatcher
|
|
{
|
|
public:
|
|
GenericDescriptorMatcher() {}
|
|
virtual ~GenericDescriptorMatcher() {}
|
|
|
|
virtual void add( const vector<Mat>& imgCollection,
|
|
vector<vector<KeyPoint> >& pointCollection );
|
|
|
|
const vector<Mat>& getTrainImgCollection() const;
|
|
const vector<vector<KeyPoint> >& getTrainPointCollection() const;
|
|
virtual void clear();
|
|
|
|
virtual void train() = 0;
|
|
|
|
virtual bool supportMask() = 0;
|
|
|
|
virtual void classify( const Mat& queryImage,
|
|
vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImage,
|
|
vector<KeyPoint>& trainPoints ) const;
|
|
virtual void classify( const Mat& queryImage,
|
|
vector<KeyPoint>& queryPoints );
|
|
|
|
/*
|
|
* Group of methods to match keypoints from image pair.
|
|
*/
|
|
void match( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImg, vector<KeyPoint>& trainPoints,
|
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const;
|
|
void knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImg, vector<KeyPoint>& trainPoints,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
void radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
const Mat& trainImg, vector<KeyPoint>& trainPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
/*
|
|
* Group of methods to match keypoints from one image to image set.
|
|
*/
|
|
void match( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
|
|
void knnMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, int knn,
|
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
|
|
void radiusMatch( const Mat& queryImg, vector<KeyPoint>& queryPoints,
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
|
|
|
|
virtual void read( const FileNode& ) {}
|
|
virtual void write( FileStorage& ) const {}
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::add}
|
|
Adds images and keypoints from them to the train collection (descriptors are supposed to be calculated here).
|
|
If train collection is not empty new image and keypoints from them will be added to
|
|
existing data.
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::add( const vector<Mat>\& imgCollection,
|
|
\par vector<vector<KeyPoint> >\& pointCollection );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{imgCollection}{Image collection.}
|
|
\cvarg{pointCollection}{Point collection. Assumes that \texttt{pointCollection[i]} are keypoints
|
|
detected in an image \texttt{imgCollection[i]}. }
|
|
\end{description}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainImgCollection}
|
|
Returns train image collection.
|
|
|
|
\begin{lstlisting}
|
|
const vector<Mat>& GenericDescriptorMatcher::getTrainImgCollection() const;
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainPointCollection}
|
|
Returns train keypoints collection.
|
|
|
|
\begin{lstlisting}
|
|
const vector<vector<KeyPoint> >&
|
|
GenericDescriptorMatcher::getTrainPointCollection() const;
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::clear}
|
|
Clear train collection (iamges and keypoints).
|
|
|
|
\begin{lstlisting}
|
|
void GenericDescriptorMatcher::clear();
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::train}
|
|
Train the object, e.g. tree-based structure to extract descriptors or
|
|
to optimize descriptors matching.
|
|
|
|
\begin{lstlisting}
|
|
void GenericDescriptorMatcher::train();
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::supportMask}
|
|
Returns true if generic descriptor matcher supports masking permissible matches.
|
|
|
|
\begin{lstlisting}
|
|
void GenericDescriptorMatcher::supportMask();
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::classify}
|
|
Classifies query keypoints under keypoints of one train image qiven as input argument
|
|
(first version of the method) or train image collection that set using
|
|
\cvCppCross{GenericDescriptorMatcher::add} (second version).
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::classify( \par const Mat\& queryImage,
|
|
\par vector<KeyPoint>\& queryPoints,
|
|
\par const Mat\& trainImage,
|
|
\par vector<KeyPoint>\& trainPoints ) const;
|
|
}
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::classify( const Mat\& queryImage,
|
|
\par vector<KeyPoint>\& queryPoints );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{queryImage}{The query image.}
|
|
\cvarg{queryPoints}{Keypoints from the query image.}
|
|
\cvarg{trainImage}{The train image.}
|
|
\cvarg{trainPoints}{Keypoints from the train image.}
|
|
\end{description}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::match}
|
|
Find best match for query keypoints to the training set. In first version of method
|
|
one train image and keypoints detected on it - are input arguments. In second version
|
|
query keypoints are matched to training collectin that set using
|
|
\cvCppCross{GenericDescriptorMatcher::add}. As in \cvCppCross{DescriptorMatcher::match}
|
|
the mask can be set.
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::match(
|
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints,
|
|
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints,
|
|
\par vector<DMatch>\& matches, const Mat\& mask=Mat() ) const;
|
|
}
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::match(
|
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints,
|
|
\par vector<DMatch>\& matches,
|
|
\par const vector<Mat>\& masks=vector<Mat>() );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{queryImg}{Query image.}
|
|
\cvarg{queryPoints}{Keypoint detected in \texttt{queryImg}.}
|
|
\cvarg{trainImg}{Train image.}
|
|
\cvarg{trainPoints}{Keypoint detected in \texttt{trainImg}.}
|
|
\cvarg{matches}{Matches. If some query descriptor (keypoint) masked out in \texttt{mask}
|
|
no match will be added for this descriptor.
|
|
So \texttt{matches} size may be less query keypoints count.}
|
|
\cvarg{mask}{Mask specifying permissible matches between input query and train keypoints.}
|
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query keypoints
|
|
and stored train keypointss from i-th image.}
|
|
|
|
\end{description}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::knnMatch}
|
|
Find the knn best matches for each keypoint from a query set with train keypoints.
|
|
Found knn (or less if not possible) matches are returned in distance increasing order.
|
|
Details see in \cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::knnMatch}.
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::knnMatch(
|
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints,
|
|
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints,
|
|
\par vector<vector<DMatch> >\& matches, int knn,
|
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const;
|
|
}
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::knnMatch(
|
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints,
|
|
\par vector<vector<DMatch> >\& matches, int knn,
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
\par bool compactResult=false );
|
|
}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::radiusMatch}
|
|
Find the best matches for each query keypoint which have distance less than given threshold.
|
|
Found matches are returned in distance increasing order. Details see in
|
|
\cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::radiusMatch}.
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::radiusMatch(
|
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints,
|
|
\par const Mat\& trainImg, vector<KeyPoint>\& trainPoints,
|
|
\par vector<vector<DMatch> >\& matches, float maxDistance,
|
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
|
|
}
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::radiusMatch(
|
|
\par const Mat\& queryImg, vector<KeyPoint>\& queryPoints,
|
|
\par vector<vector<DMatch> >\& matches, float maxDistance,
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
\par bool compactResult=false );
|
|
}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::read}
|
|
Reads matcher object from a file node.
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::read( const FileNode\& fn );
|
|
}
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::write}
|
|
Writes match object to a file storage
|
|
|
|
\cvdefCpp{
|
|
void GenericDescriptorMatcher::write( FileStorage\& fs ) const;
|
|
}
|
|
|
|
\cvclass{OneWayDescriptorMatcher}
|
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{OneWayDescriptorBase} class.
|
|
|
|
\begin{lstlisting}
|
|
class OneWayDescriptorMatcher : public GenericDescriptorMatcher
|
|
{
|
|
public:
|
|
class Params
|
|
{
|
|
public:
|
|
static const int POSE_COUNT = 500;
|
|
static const int PATCH_WIDTH = 24;
|
|
static const int PATCH_HEIGHT = 24;
|
|
static float GET_MIN_SCALE() { return 0.7f; }
|
|
static float GET_MAX_SCALE() { return 1.5f; }
|
|
static float GET_STEP_SCALE() { return 1.2f; }
|
|
|
|
Params( int _poseCount = POSE_COUNT,
|
|
Size _patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
|
|
string _pcaFilename = string(),
|
|
string _trainPath = string(),
|
|
string _trainImagesList = string(),
|
|
float _minScale = GET_MIN_SCALE(), float _maxScale = GET_MAX_SCALE(),
|
|
float _stepScale = GET_STEP_SCALE() ) :
|
|
poseCount(_poseCount), patchSize(_patchSize), pcaFilename(_pcaFilename),
|
|
trainPath(_trainPath), trainImagesList(_trainImagesList),
|
|
minScale(_minScale), maxScale(_maxScale), stepScale(_stepScale) {}
|
|
|
|
int poseCount;
|
|
Size patchSize;
|
|
string pcaFilename;
|
|
string trainPath;
|
|
string trainImagesList;
|
|
|
|
float minScale, maxScale, stepScale;
|
|
};
|
|
|
|
// Equivalent to calling PointMatchOneWay() followed by Initialize(_params)
|
|
OneWayDescriptorMatcher( const Params& _params=Params() );
|
|
virtual ~OneWayDescriptorMatcher();
|
|
|
|
void initialize( const Params& _params,
|
|
const Ptr<OneWayDescriptorBase>& _base=Ptr<OneWayDescriptorBase>() );
|
|
|
|
virtual void clear ();
|
|
virtual void train();
|
|
|
|
virtual bool supportMask() { return false; }
|
|
|
|
virtual void read( const FileNode &fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{FernDescriptorMatcher}
|
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{FernClassifier} class.
|
|
|
|
\begin{lstlisting}
|
|
class FernDescriptorMatcher : public GenericDescriptorMatcher
|
|
{
|
|
public:
|
|
class Params
|
|
{
|
|
public:
|
|
Params( int _nclasses=0,
|
|
int _patchSize=FernClassifier::PATCH_SIZE,
|
|
int _signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE,
|
|
int _nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
int _structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
int _nviews=FernClassifier::DEFAULT_VIEWS,
|
|
int _compressionMethod=FernClassifier::COMPRESSION_NONE,
|
|
const PatchGenerator& patchGenerator=PatchGenerator() );
|
|
|
|
Params( const string& _filename );
|
|
|
|
int nclasses;
|
|
int patchSize;
|
|
int signatureSize;
|
|
int nstructs;
|
|
int structSize;
|
|
int nviews;
|
|
int compressionMethod;
|
|
PatchGenerator patchGenerator;
|
|
|
|
string filename;
|
|
};
|
|
|
|
FernDescriptorMatcher( const Params& _params=Params() );
|
|
virtual ~FernDescriptorMatcher();
|
|
|
|
virtual void clear();
|
|
|
|
virtual void train();
|
|
|
|
virtual bool supportMask() { return false; }
|
|
|
|
virtual void read( const FileNode &fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvclass{VectorDescriptorMatcher}
|
|
Class used for matching descriptors that can be described as vectors in a finite-dimensional space.
|
|
|
|
\begin{lstlisting}
|
|
class VectorDescriptorMatcher : public GenericDescriptorMatcher
|
|
{
|
|
public:
|
|
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& _extractor,
|
|
const Ptr<DescriptorMatcher>& _matcher )
|
|
: extractor( _extractor ), matcher( _matcher )
|
|
{ CV_Assert( !extractor.empty() && !matcher.empty() ); }
|
|
|
|
virtual ~VectorDescriptorMatcher() {}
|
|
|
|
virtual void add( const vector<Mat>& imgCollection,
|
|
vector<vector<KeyPoint> >& pointCollection );
|
|
|
|
virtual void clear();
|
|
|
|
virtual void train();
|
|
|
|
virtual bool supportMask() { matcher->supportMask(); }
|
|
|
|
virtual void read( const FileNode& fn );
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
...
|
|
};
|
|
\end{lstlisting}
|
|
|
|
Example of creating:
|
|
\begin{lstlisting}
|
|
VectorDescriptorMatcher matcher( new SurfDescriptorExtractor,
|
|
new BruteForceMatcher<L2<float> > );
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{drawMatches}
|
|
This function draws matches of keypints from two images on output image.
|
|
Match is a line connecting two keypoints (circles).
|
|
|
|
\cvdefCpp{
|
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1,
|
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2,
|
|
\par const vector<DMatch>\& matches1to2, Mat\& outImg,
|
|
\par const Scalar\& matchColor=Scalar::all(-1),
|
|
\par const Scalar\& singlePointColor=Scalar::all(-1),
|
|
\par const vector<char>\& matchesMask=vector<char>(),
|
|
\par int flags=DrawMatchesFlags::DEFAULT );
|
|
}
|
|
|
|
\cvdefCpp{
|
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1,
|
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2,
|
|
\par const vector<vector<DMatch> >\& matches1to2, Mat\& outImg,
|
|
\par const Scalar\& matchColor=Scalar::all(-1),
|
|
\par const Scalar\& singlePointColor=Scalar::all(-1),
|
|
\par const vector<vector<char>>\& matchesMask=
|
|
\par vector<vector<char> >(),
|
|
\par int flags=DrawMatchesFlags::DEFAULT );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{img1}{First source image.}
|
|
\cvarg{keypoints1}{Keypoints from first source image.}
|
|
\cvarg{img2}{Second source image.}
|
|
\cvarg{keypoints2}{Keypoints from second source image.}
|
|
\cvarg{matches}{Matches from first image to second one, i.e. \texttt{keypoints1[i]}
|
|
has corresponding point \texttt{keypoints2[matches[i]]}. }
|
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value
|
|
what is drawn in output image. See below possible \texttt{flags} bit values. }
|
|
\cvarg{matchColor}{Color of matches (lines and connected keypoints).
|
|
If \texttt{matchColor==Scalar::all(-1)} color will be generated randomly.}
|
|
\cvarg{singlePointColor}{Color of single keypoints (circles), i.e. keypoints not having the matches.
|
|
If \texttt{singlePointColor==Scalar::all(-1)} color will be generated randomly.}
|
|
\cvarg{matchesMask}{Mask determining which matches will be drawn. If mask is empty all matches will be drawn. }
|
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing.
|
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags}, see below. }
|
|
\end{description}
|
|
|
|
\begin{lstlisting}
|
|
struct DrawMatchesFlags
|
|
{
|
|
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
|
|
// i.e. existing memory of output image may be reused.
|
|
// Two source image, matches and single keypoints
|
|
// will be drawn.
|
|
// For each keypoint only the center point will be
|
|
// drawn (without the circle around keypoint with
|
|
// keypoint size and orientation).
|
|
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be
|
|
// created (Mat::create). Matches will be drawn
|
|
// on existing content of output image.
|
|
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
|
|
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around
|
|
// keypoint with keypoint size and orientation will
|
|
// be drawn.
|
|
};
|
|
};
|
|
\end{lstlisting}
|
|
|
|
\cvCppFunc{drawKeypoints}
|
|
Draw keypoints.
|
|
|
|
\cvdefCpp{
|
|
void drawKeypoints( const Mat\& image,
|
|
\par const vector<KeyPoint>\& keypoints,
|
|
\par Mat\& outImg, const Scalar\& color=Scalar::all(-1),
|
|
\par int flags=DrawMatchesFlags::DEFAULT );
|
|
}
|
|
|
|
\begin{description}
|
|
\cvarg{image}{Source image.}
|
|
\cvarg{keypoints}{Keypoints from source image.}
|
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value
|
|
what is drawn in output image. See possible \texttt{flags} bit values. }
|
|
\cvarg{color}{Color of keypoints}.
|
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing.
|
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags},
|
|
see above in \cvCppCross{drawMatches}. }
|
|
\end{description}
|
|
|
|
\fi
|