opencv/samples/python2/digits_adjust.py
2012-06-28 17:33:11 +00:00

136 lines
4.7 KiB
Python

'''
Digit recognition adjustment.
Grid search is used to find the best parameters for SVN and KNearest classifiers.
SVM adjustment follows the guidelines given in
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
Threading or cloud computing (with http://www.picloud.com/)) may be used
to speedup the computation.
Usage:
digits_adjust.py [--model {svm|knearest}] [--cloud] [--env <PiCloud environment>]
--model {svm|knearest} - select the classifier (SVM is the default)
--cloud - use PiCloud computing platform (for SVM only)
--env - cloud environment name
'''
# TODO dataset preprocessing in cloud
# TODO cloud env setup tutorial
import numpy as np
import cv2
from multiprocessing.pool import ThreadPool
from digits import *
def cross_validate(model_class, params, samples, labels, kfold = 3, pool = None):
n = len(samples)
folds = np.array_split(np.arange(n), kfold)
def f(i):
model = model_class(**params)
test_idx = folds[i]
train_idx = list(folds)
train_idx.pop(i)
train_idx = np.hstack(train_idx)
train_samples, train_labels = samples[train_idx], labels[train_idx]
test_samples, test_labels = samples[test_idx], labels[test_idx]
model.train(train_samples, train_labels)
resp = model.predict(test_samples)
score = (resp != test_labels).mean()
print ".",
return score
if pool is None:
scores = map(f, xrange(kfold))
else:
scores = pool.map(f, xrange(kfold))
return np.mean(scores)
def adjust_KNearest(samples, labels):
print 'adjusting KNearest ...'
best_err, best_k = np.inf, -1
for k in xrange(1, 9):
err = cross_validate(KNearest, dict(k=k), samples, labels)
if err < best_err:
best_err, best_k = err, k
print 'k = %d, error: %.2f %%' % (k, err*100)
best_params = dict(k=best_k)
print 'best params:', best_params
return best_params
def adjust_SVM(samples, labels, usecloud=False, cloud_env=''):
Cs = np.logspace(0, 5, 10, base=2)
gammas = np.logspace(-7, -2, 10, base=2)
scores = np.zeros((len(Cs), len(gammas)))
scores[:] = np.nan
if usecloud:
try:
import cloud
except ImportError:
print 'cloud module is not installed'
usecloud = False
if usecloud:
print 'uploading dataset to cloud...'
np.savez('train.npz', samples=samples, labels=labels)
cloud.files.put('train.npz')
print 'adjusting SVM (may take a long time) ...'
def f(job):
i, j = job
params = dict(C = Cs[i], gamma=gammas[j])
score = cross_validate(SVM, params, samples, labels)
return i, j, score
def fcloud(job):
i, j = job
cloud.files.get('train.npz')
npz = np.load('train.npz')
params = dict(C = Cs[i], gamma=gammas[j])
score = cross_validate(SVM, params, npz['samples'], npz['labels'])
return i, j, score
if usecloud:
jids = cloud.map(fcloud, np.ndindex(*scores.shape), _env=cloud_env, _profile=True)
ires = cloud.iresult(jids)
else:
pool = ThreadPool(processes=cv2.getNumberOfCPUs())
ires = pool.imap_unordered(f, np.ndindex(*scores.shape))
for count, (i, j, score) in enumerate(ires):
scores[i, j] = score
print '%d / %d (best error: %.2f %%, last: %.2f %%)' % (count+1, scores.size, np.nanmin(scores)*100, score*100)
print scores
i, j = np.unravel_index(scores.argmin(), scores.shape)
best_params = dict(C = Cs[i], gamma=gammas[j])
print 'best params:', best_params
print 'best error: %.2f %%' % (scores.min()*100)
return best_params
if __name__ == '__main__':
import getopt
import sys
print __doc__
args, _ = getopt.getopt(sys.argv[1:], '', ['model=', 'cloud', 'env='])
args = dict(args)
args.setdefault('--model', 'svm')
args.setdefault('--env', '')
if args['--model'] not in ['svm', 'knearest']:
print 'unknown model "%s"' % args['--model']
sys.exit(1)
digits, labels = load_digits('digits.png')
shuffle = np.random.permutation(len(digits))
digits, labels = digits[shuffle], labels[shuffle]
digits2 = map(deskew, digits)
samples = np.float32(digits2).reshape(-1, SZ*SZ) / 255.0
t = clock()
if args['--model'] == 'knearest':
adjust_KNearest(samples, labels)
else:
adjust_SVM(samples, labels, usecloud='--cloud' in args, cloud_env = args['--env'])
print 'work time: %f s' % (clock() - t)