1053 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1053 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // Copyright 2011 Google Inc. All Rights Reserved.
 | |
| //
 | |
| // Use of this source code is governed by a BSD-style license
 | |
| // that can be found in the COPYING file in the root of the source
 | |
| // tree. An additional intellectual property rights grant can be found
 | |
| // in the file PATENTS. All contributing project authors may
 | |
| // be found in the AUTHORS file in the root of the source tree.
 | |
| // -----------------------------------------------------------------------------
 | |
| //
 | |
| //   Quantization
 | |
| //
 | |
| // Author: Skal (pascal.massimino@gmail.com)
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "./vp8enci.h"
 | |
| #include "./cost.h"
 | |
| 
 | |
| #define DO_TRELLIS_I4  1
 | |
| #define DO_TRELLIS_I16 1   // not a huge gain, but ok at low bitrate.
 | |
| #define DO_TRELLIS_UV  0   // disable trellis for UV. Risky. Not worth.
 | |
| #define USE_TDISTO 1
 | |
| 
 | |
| #define MID_ALPHA 64      // neutral value for susceptibility
 | |
| #define MIN_ALPHA 30      // lowest usable value for susceptibility
 | |
| #define MAX_ALPHA 100     // higher meaninful value for susceptibility
 | |
| 
 | |
| #define SNS_TO_DQ 0.9     // Scaling constant between the sns value and the QP
 | |
|                           // power-law modulation. Must be strictly less than 1.
 | |
| 
 | |
| #define I4_PENALTY 4000   // Rate-penalty for quick i4/i16 decision
 | |
| 
 | |
| #define MULT_8B(a, b) (((a) * (b) + 128) >> 8)
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| static WEBP_INLINE int clip(int v, int m, int M) {
 | |
|   return v < m ? m : v > M ? M : v;
 | |
| }
 | |
| 
 | |
| static const uint8_t kZigzag[16] = {
 | |
|   0, 1, 4, 8, 5, 2, 3, 6, 9, 12, 13, 10, 7, 11, 14, 15
 | |
| };
 | |
| 
 | |
| static const uint8_t kDcTable[128] = {
 | |
|   4,     5,   6,   7,   8,   9,  10,  10,
 | |
|   11,   12,  13,  14,  15,  16,  17,  17,
 | |
|   18,   19,  20,  20,  21,  21,  22,  22,
 | |
|   23,   23,  24,  25,  25,  26,  27,  28,
 | |
|   29,   30,  31,  32,  33,  34,  35,  36,
 | |
|   37,   37,  38,  39,  40,  41,  42,  43,
 | |
|   44,   45,  46,  46,  47,  48,  49,  50,
 | |
|   51,   52,  53,  54,  55,  56,  57,  58,
 | |
|   59,   60,  61,  62,  63,  64,  65,  66,
 | |
|   67,   68,  69,  70,  71,  72,  73,  74,
 | |
|   75,   76,  76,  77,  78,  79,  80,  81,
 | |
|   82,   83,  84,  85,  86,  87,  88,  89,
 | |
|   91,   93,  95,  96,  98, 100, 101, 102,
 | |
|   104, 106, 108, 110, 112, 114, 116, 118,
 | |
|   122, 124, 126, 128, 130, 132, 134, 136,
 | |
|   138, 140, 143, 145, 148, 151, 154, 157
 | |
| };
 | |
| 
 | |
| static const uint16_t kAcTable[128] = {
 | |
|   4,     5,   6,   7,   8,   9,  10,  11,
 | |
|   12,   13,  14,  15,  16,  17,  18,  19,
 | |
|   20,   21,  22,  23,  24,  25,  26,  27,
 | |
|   28,   29,  30,  31,  32,  33,  34,  35,
 | |
|   36,   37,  38,  39,  40,  41,  42,  43,
 | |
|   44,   45,  46,  47,  48,  49,  50,  51,
 | |
|   52,   53,  54,  55,  56,  57,  58,  60,
 | |
|   62,   64,  66,  68,  70,  72,  74,  76,
 | |
|   78,   80,  82,  84,  86,  88,  90,  92,
 | |
|   94,   96,  98, 100, 102, 104, 106, 108,
 | |
|   110, 112, 114, 116, 119, 122, 125, 128,
 | |
|   131, 134, 137, 140, 143, 146, 149, 152,
 | |
|   155, 158, 161, 164, 167, 170, 173, 177,
 | |
|   181, 185, 189, 193, 197, 201, 205, 209,
 | |
|   213, 217, 221, 225, 229, 234, 239, 245,
 | |
|   249, 254, 259, 264, 269, 274, 279, 284
 | |
| };
 | |
| 
 | |
| static const uint16_t kAcTable2[128] = {
 | |
|   8,     8,   9,  10,  12,  13,  15,  17,
 | |
|   18,   20,  21,  23,  24,  26,  27,  29,
 | |
|   31,   32,  34,  35,  37,  38,  40,  41,
 | |
|   43,   44,  46,  48,  49,  51,  52,  54,
 | |
|   55,   57,  58,  60,  62,  63,  65,  66,
 | |
|   68,   69,  71,  72,  74,  75,  77,  79,
 | |
|   80,   82,  83,  85,  86,  88,  89,  93,
 | |
|   96,   99, 102, 105, 108, 111, 114, 117,
 | |
|   120, 124, 127, 130, 133, 136, 139, 142,
 | |
|   145, 148, 151, 155, 158, 161, 164, 167,
 | |
|   170, 173, 176, 179, 184, 189, 193, 198,
 | |
|   203, 207, 212, 217, 221, 226, 230, 235,
 | |
|   240, 244, 249, 254, 258, 263, 268, 274,
 | |
|   280, 286, 292, 299, 305, 311, 317, 323,
 | |
|   330, 336, 342, 348, 354, 362, 370, 379,
 | |
|   385, 393, 401, 409, 416, 424, 432, 440
 | |
| };
 | |
| 
 | |
| static const uint16_t kCoeffThresh[16] = {
 | |
|   0,  10, 20, 30,
 | |
|   10, 20, 30, 30,
 | |
|   20, 30, 30, 30,
 | |
|   30, 30, 30, 30
 | |
| };
 | |
| 
 | |
| // TODO(skal): tune more. Coeff thresholding?
 | |
| static const uint8_t kBiasMatrices[3][16] = {  // [3] = [luma-ac,luma-dc,chroma]
 | |
|   { 96, 96, 96, 96,
 | |
|     96, 96, 96, 96,
 | |
|     96, 96, 96, 96,
 | |
|     96, 96, 96, 96 },
 | |
|   { 96, 96, 96, 96,
 | |
|     96, 96, 96, 96,
 | |
|     96, 96, 96, 96,
 | |
|     96, 96, 96, 96 },
 | |
|   { 96, 96, 96, 96,
 | |
|     96, 96, 96, 96,
 | |
|     96, 96, 96, 96,
 | |
|     96, 96, 96, 96 }
 | |
| };
 | |
| 
 | |
| // Sharpening by (slightly) raising the hi-frequency coeffs (only for trellis).
 | |
| // Hack-ish but helpful for mid-bitrate range. Use with care.
 | |
| static const uint8_t kFreqSharpening[16] = {
 | |
|   0,  30, 60, 90,
 | |
|   30, 60, 90, 90,
 | |
|   60, 90, 90, 90,
 | |
|   90, 90, 90, 90
 | |
| };
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Initialize quantization parameters in VP8Matrix
 | |
| 
 | |
| // Returns the average quantizer
 | |
| static int ExpandMatrix(VP8Matrix* const m, int type) {
 | |
|   int i;
 | |
|   int sum = 0;
 | |
|   for (i = 2; i < 16; ++i) {
 | |
|     m->q_[i] = m->q_[1];
 | |
|   }
 | |
|   for (i = 0; i < 16; ++i) {
 | |
|     const int j = kZigzag[i];
 | |
|     const int bias = kBiasMatrices[type][j];
 | |
|     m->iq_[j] = (1 << QFIX) / m->q_[j];
 | |
|     m->bias_[j] = BIAS(bias);
 | |
|     // TODO(skal): tune kCoeffThresh[]
 | |
|     m->zthresh_[j] = ((256 /*+ kCoeffThresh[j]*/ - bias) * m->q_[j] + 127) >> 8;
 | |
|     m->sharpen_[j] = (kFreqSharpening[j] * m->q_[j]) >> 11;
 | |
|     sum += m->q_[j];
 | |
|   }
 | |
|   return (sum + 8) >> 4;
 | |
| }
 | |
| 
 | |
| static void SetupMatrices(VP8Encoder* enc) {
 | |
|   int i;
 | |
|   const int tlambda_scale =
 | |
|     (enc->method_ >= 4) ? enc->config_->sns_strength
 | |
|                         : 0;
 | |
|   const int num_segments = enc->segment_hdr_.num_segments_;
 | |
|   for (i = 0; i < num_segments; ++i) {
 | |
|     VP8SegmentInfo* const m = &enc->dqm_[i];
 | |
|     const int q = m->quant_;
 | |
|     int q4, q16, quv;
 | |
|     m->y1_.q_[0] = kDcTable[clip(q + enc->dq_y1_dc_, 0, 127)];
 | |
|     m->y1_.q_[1] = kAcTable[clip(q,                  0, 127)];
 | |
| 
 | |
|     m->y2_.q_[0] = kDcTable[ clip(q + enc->dq_y2_dc_, 0, 127)] * 2;
 | |
|     m->y2_.q_[1] = kAcTable2[clip(q + enc->dq_y2_ac_, 0, 127)];
 | |
| 
 | |
|     m->uv_.q_[0] = kDcTable[clip(q + enc->dq_uv_dc_, 0, 117)];
 | |
|     m->uv_.q_[1] = kAcTable[clip(q + enc->dq_uv_ac_, 0, 127)];
 | |
| 
 | |
|     q4  = ExpandMatrix(&m->y1_, 0);
 | |
|     q16 = ExpandMatrix(&m->y2_, 1);
 | |
|     quv = ExpandMatrix(&m->uv_, 2);
 | |
| 
 | |
|     // TODO: Switch to kLambda*[] tables?
 | |
|     {
 | |
|       m->lambda_i4_  = (3 * q4 * q4) >> 7;
 | |
|       m->lambda_i16_ = (3 * q16 * q16);
 | |
|       m->lambda_uv_  = (3 * quv * quv) >> 6;
 | |
|       m->lambda_mode_    = (1 * q4 * q4) >> 7;
 | |
|       m->lambda_trellis_i4_  = (7 * q4 * q4) >> 3;
 | |
|       m->lambda_trellis_i16_ = (q16 * q16) >> 2;
 | |
|       m->lambda_trellis_uv_  = (quv *quv) << 1;
 | |
|       m->tlambda_            = (tlambda_scale * q4) >> 5;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Initialize filtering parameters
 | |
| 
 | |
| // Very small filter-strength values have close to no visual effect. So we can
 | |
| // save a little decoding-CPU by turning filtering off for these.
 | |
| #define FSTRENGTH_CUTOFF 3
 | |
| 
 | |
| static void SetupFilterStrength(VP8Encoder* const enc) {
 | |
|   int i;
 | |
|   const int level0 = enc->config_->filter_strength;
 | |
|   for (i = 0; i < NUM_MB_SEGMENTS; ++i) {
 | |
|     // Segments with lower quantizer will be less filtered. TODO: tune (wrt SNS)
 | |
|     const int level = level0 * 256 * enc->dqm_[i].quant_ / 128;
 | |
|     const int f = level / (256 + enc->dqm_[i].beta_);
 | |
|     enc->dqm_[i].fstrength_ = (f < FSTRENGTH_CUTOFF) ? 0 : (f > 63) ? 63 : f;
 | |
|   }
 | |
|   // We record the initial strength (mainly for the case of 1-segment only).
 | |
|   enc->filter_hdr_.level_ = enc->dqm_[0].fstrength_;
 | |
|   enc->filter_hdr_.simple_ = (enc->config_->filter_type == 0);
 | |
|   enc->filter_hdr_.sharpness_ = enc->config_->filter_sharpness;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // Note: if you change the values below, remember that the max range
 | |
| // allowed by the syntax for DQ_UV is [-16,16].
 | |
| #define MAX_DQ_UV (6)
 | |
| #define MIN_DQ_UV (-4)
 | |
| 
 | |
| // We want to emulate jpeg-like behaviour where the expected "good" quality
 | |
| // is around q=75. Internally, our "good" middle is around c=50. So we
 | |
| // map accordingly using linear piece-wise function
 | |
| static double QualityToCompression(double c) {
 | |
|   const double linear_c = (c < 0.75) ? c * (2. / 3.) : 2. * c - 1.;
 | |
|   // The file size roughly scales as pow(quantizer, 3.). Actually, the
 | |
|   // exponent is somewhere between 2.8 and 3.2, but we're mostly interested
 | |
|   // in the mid-quant range. So we scale the compressibility inversely to
 | |
|   // this power-law: quant ~= compression ^ 1/3. This law holds well for
 | |
|   // low quant. Finer modelling for high-quant would make use of kAcTable[]
 | |
|   // more explicitly.
 | |
|   const double v = pow(linear_c, 1 / 3.);
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| static double QualityToJPEGCompression(double c, double alpha) {
 | |
|   // We map the complexity 'alpha' and quality setting 'c' to a compression
 | |
|   // exponent empirically matched to the compression curve of libjpeg6b.
 | |
|   // On average, the WebP output size will be roughly similar to that of a
 | |
|   // JPEG file compressed with same quality factor.
 | |
|   const double amin = 0.30;
 | |
|   const double amax = 0.85;
 | |
|   const double exp_min = 0.4;
 | |
|   const double exp_max = 0.9;
 | |
|   const double slope = (exp_min - exp_max) / (amax - amin);
 | |
|   // Linearly interpolate 'expn' from exp_min to exp_max
 | |
|   // in the [amin, amax] range.
 | |
|   const double expn = (alpha > amax) ? exp_min
 | |
|                     : (alpha < amin) ? exp_max
 | |
|                     : exp_max + slope * (alpha - amin);
 | |
|   const double v = pow(c, expn);
 | |
|   return v;
 | |
| }
 | |
| 
 | |
| static int SegmentsAreEquivalent(const VP8SegmentInfo* const S1,
 | |
|                                  const VP8SegmentInfo* const S2) {
 | |
|   return (S1->quant_ == S2->quant_) && (S1->fstrength_ == S2->fstrength_);
 | |
| }
 | |
| 
 | |
| static void SimplifySegments(VP8Encoder* const enc) {
 | |
|   int map[NUM_MB_SEGMENTS] = { 0, 1, 2, 3 };
 | |
|   const int num_segments = enc->segment_hdr_.num_segments_;
 | |
|   int num_final_segments = 1;
 | |
|   int s1, s2;
 | |
|   for (s1 = 1; s1 < num_segments; ++s1) {    // find similar segments
 | |
|     const VP8SegmentInfo* const S1 = &enc->dqm_[s1];
 | |
|     int found = 0;
 | |
|     // check if we already have similar segment
 | |
|     for (s2 = 0; s2 < num_final_segments; ++s2) {
 | |
|       const VP8SegmentInfo* const S2 = &enc->dqm_[s2];
 | |
|       if (SegmentsAreEquivalent(S1, S2)) {
 | |
|         found = 1;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     map[s1] = s2;
 | |
|     if (!found) {
 | |
|       if (num_final_segments != s1) {
 | |
|         enc->dqm_[num_final_segments] = enc->dqm_[s1];
 | |
|       }
 | |
|       ++num_final_segments;
 | |
|     }
 | |
|   }
 | |
|   if (num_final_segments < num_segments) {  // Remap
 | |
|     int i = enc->mb_w_ * enc->mb_h_;
 | |
|     while (i-- > 0) enc->mb_info_[i].segment_ = map[enc->mb_info_[i].segment_];
 | |
|     enc->segment_hdr_.num_segments_ = num_final_segments;
 | |
|     // Replicate the trailing segment infos (it's mostly cosmetics)
 | |
|     for (i = num_final_segments; i < num_segments; ++i) {
 | |
|       enc->dqm_[i] = enc->dqm_[num_final_segments - 1];
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| void VP8SetSegmentParams(VP8Encoder* const enc, float quality) {
 | |
|   int i;
 | |
|   int dq_uv_ac, dq_uv_dc;
 | |
|   const int num_segments = enc->segment_hdr_.num_segments_;
 | |
|   const double amp = SNS_TO_DQ * enc->config_->sns_strength / 100. / 128.;
 | |
|   const double Q = quality / 100.;
 | |
|   const double c_base = enc->config_->emulate_jpeg_size ?
 | |
|       QualityToJPEGCompression(Q, enc->alpha_ / 255.) :
 | |
|       QualityToCompression(Q);
 | |
|   for (i = 0; i < num_segments; ++i) {
 | |
|     // We modulate the base coefficient to accommodate for the quantization
 | |
|     // susceptibility and allow denser segments to be quantized more.
 | |
|     const double expn = 1. - amp * enc->dqm_[i].alpha_;
 | |
|     const double c = pow(c_base, expn);
 | |
|     const int q = (int)(127. * (1. - c));
 | |
|     assert(expn > 0.);
 | |
|     enc->dqm_[i].quant_ = clip(q, 0, 127);
 | |
|   }
 | |
| 
 | |
|   // purely indicative in the bitstream (except for the 1-segment case)
 | |
|   enc->base_quant_ = enc->dqm_[0].quant_;
 | |
| 
 | |
|   // fill-in values for the unused segments (required by the syntax)
 | |
|   for (i = num_segments; i < NUM_MB_SEGMENTS; ++i) {
 | |
|     enc->dqm_[i].quant_ = enc->base_quant_;
 | |
|   }
 | |
| 
 | |
|   // uv_alpha_ is normally spread around ~60. The useful range is
 | |
|   // typically ~30 (quite bad) to ~100 (ok to decimate UV more).
 | |
|   // We map it to the safe maximal range of MAX/MIN_DQ_UV for dq_uv.
 | |
|   dq_uv_ac = (enc->uv_alpha_ - MID_ALPHA) * (MAX_DQ_UV - MIN_DQ_UV)
 | |
|                                           / (MAX_ALPHA - MIN_ALPHA);
 | |
|   // we rescale by the user-defined strength of adaptation
 | |
|   dq_uv_ac = dq_uv_ac * enc->config_->sns_strength / 100;
 | |
|   // and make it safe.
 | |
|   dq_uv_ac = clip(dq_uv_ac, MIN_DQ_UV, MAX_DQ_UV);
 | |
|   // We also boost the dc-uv-quant a little, based on sns-strength, since
 | |
|   // U/V channels are quite more reactive to high quants (flat DC-blocks
 | |
|   // tend to appear, and are displeasant).
 | |
|   dq_uv_dc = -4 * enc->config_->sns_strength / 100;
 | |
|   dq_uv_dc = clip(dq_uv_dc, -15, 15);   // 4bit-signed max allowed
 | |
| 
 | |
|   enc->dq_y1_dc_ = 0;       // TODO(skal): dq-lum
 | |
|   enc->dq_y2_dc_ = 0;
 | |
|   enc->dq_y2_ac_ = 0;
 | |
|   enc->dq_uv_dc_ = dq_uv_dc;
 | |
|   enc->dq_uv_ac_ = dq_uv_ac;
 | |
| 
 | |
|   SetupFilterStrength(enc);   // initialize segments' filtering, eventually
 | |
| 
 | |
|   if (num_segments > 1) SimplifySegments(enc);
 | |
| 
 | |
|   SetupMatrices(enc);         // finalize quantization matrices
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Form the predictions in cache
 | |
| 
 | |
| // Must be ordered using {DC_PRED, TM_PRED, V_PRED, H_PRED} as index
 | |
| const int VP8I16ModeOffsets[4] = { I16DC16, I16TM16, I16VE16, I16HE16 };
 | |
| const int VP8UVModeOffsets[4] = { C8DC8, C8TM8, C8VE8, C8HE8 };
 | |
| 
 | |
| // Must be indexed using {B_DC_PRED -> B_HU_PRED} as index
 | |
| const int VP8I4ModeOffsets[NUM_BMODES] = {
 | |
|   I4DC4, I4TM4, I4VE4, I4HE4, I4RD4, I4VR4, I4LD4, I4VL4, I4HD4, I4HU4
 | |
| };
 | |
| 
 | |
| void VP8MakeLuma16Preds(const VP8EncIterator* const it) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const uint8_t* const left = it->x_ ? enc->y_left_ : NULL;
 | |
|   const uint8_t* const top = it->y_ ? enc->y_top_ + it->x_ * 16 : NULL;
 | |
|   VP8EncPredLuma16(it->yuv_p_, left, top);
 | |
| }
 | |
| 
 | |
| void VP8MakeChroma8Preds(const VP8EncIterator* const it) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const uint8_t* const left = it->x_ ? enc->u_left_ : NULL;
 | |
|   const uint8_t* const top = it->y_ ? enc->uv_top_ + it->x_ * 16 : NULL;
 | |
|   VP8EncPredChroma8(it->yuv_p_, left, top);
 | |
| }
 | |
| 
 | |
| void VP8MakeIntra4Preds(const VP8EncIterator* const it) {
 | |
|   VP8EncPredLuma4(it->yuv_p_, it->i4_top_);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Quantize
 | |
| 
 | |
| // Layout:
 | |
| // +----+
 | |
| // |YYYY| 0
 | |
| // |YYYY| 4
 | |
| // |YYYY| 8
 | |
| // |YYYY| 12
 | |
| // +----+
 | |
| // |UUVV| 16
 | |
| // |UUVV| 20
 | |
| // +----+
 | |
| 
 | |
| const int VP8Scan[16 + 4 + 4] = {
 | |
|   // Luma
 | |
|   0 +  0 * BPS,  4 +  0 * BPS, 8 +  0 * BPS, 12 +  0 * BPS,
 | |
|   0 +  4 * BPS,  4 +  4 * BPS, 8 +  4 * BPS, 12 +  4 * BPS,
 | |
|   0 +  8 * BPS,  4 +  8 * BPS, 8 +  8 * BPS, 12 +  8 * BPS,
 | |
|   0 + 12 * BPS,  4 + 12 * BPS, 8 + 12 * BPS, 12 + 12 * BPS,
 | |
| 
 | |
|   0 + 0 * BPS,   4 + 0 * BPS, 0 + 4 * BPS,  4 + 4 * BPS,    // U
 | |
|   8 + 0 * BPS,  12 + 0 * BPS, 8 + 4 * BPS, 12 + 4 * BPS     // V
 | |
| };
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Distortion measurement
 | |
| 
 | |
| static const uint16_t kWeightY[16] = {
 | |
|   38, 32, 20, 9, 32, 28, 17, 7, 20, 17, 10, 4, 9, 7, 4, 2
 | |
| };
 | |
| 
 | |
| static const uint16_t kWeightTrellis[16] = {
 | |
| #if USE_TDISTO == 0
 | |
|   16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16
 | |
| #else
 | |
|   30, 27, 19, 11,
 | |
|   27, 24, 17, 10,
 | |
|   19, 17, 12,  8,
 | |
|   11, 10,  8,  6
 | |
| #endif
 | |
| };
 | |
| 
 | |
| // Init/Copy the common fields in score.
 | |
| static void InitScore(VP8ModeScore* const rd) {
 | |
|   rd->D  = 0;
 | |
|   rd->SD = 0;
 | |
|   rd->R  = 0;
 | |
|   rd->nz = 0;
 | |
|   rd->score = MAX_COST;
 | |
| }
 | |
| 
 | |
| static void CopyScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
 | |
|   dst->D  = src->D;
 | |
|   dst->SD = src->SD;
 | |
|   dst->R  = src->R;
 | |
|   dst->nz = src->nz;      // note that nz is not accumulated, but just copied.
 | |
|   dst->score = src->score;
 | |
| }
 | |
| 
 | |
| static void AddScore(VP8ModeScore* const dst, const VP8ModeScore* const src) {
 | |
|   dst->D  += src->D;
 | |
|   dst->SD += src->SD;
 | |
|   dst->R  += src->R;
 | |
|   dst->nz |= src->nz;     // here, new nz bits are accumulated.
 | |
|   dst->score += src->score;
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Performs trellis-optimized quantization.
 | |
| 
 | |
| // Trellis
 | |
| 
 | |
| typedef struct {
 | |
|   int prev;        // best previous
 | |
|   int level;       // level
 | |
|   int sign;        // sign of coeff_i
 | |
|   score_t cost;    // bit cost
 | |
|   score_t error;   // distortion = sum of (|coeff_i| - level_i * Q_i)^2
 | |
|   int ctx;         // context (only depends on 'level'. Could be spared.)
 | |
| } Node;
 | |
| 
 | |
| // If a coefficient was quantized to a value Q (using a neutral bias),
 | |
| // we test all alternate possibilities between [Q-MIN_DELTA, Q+MAX_DELTA]
 | |
| // We don't test negative values though.
 | |
| #define MIN_DELTA 0   // how much lower level to try
 | |
| #define MAX_DELTA 1   // how much higher
 | |
| #define NUM_NODES (MIN_DELTA + 1 + MAX_DELTA)
 | |
| #define NODE(n, l) (nodes[(n) + 1][(l) + MIN_DELTA])
 | |
| 
 | |
| static WEBP_INLINE void SetRDScore(int lambda, VP8ModeScore* const rd) {
 | |
|   // TODO: incorporate the "* 256" in the tables?
 | |
|   rd->score = rd->R * lambda + 256 * (rd->D + rd->SD);
 | |
| }
 | |
| 
 | |
| static WEBP_INLINE score_t RDScoreTrellis(int lambda, score_t rate,
 | |
|                                           score_t distortion) {
 | |
|   return rate * lambda + 256 * distortion;
 | |
| }
 | |
| 
 | |
| static int TrellisQuantizeBlock(const VP8EncIterator* const it,
 | |
|                                 int16_t in[16], int16_t out[16],
 | |
|                                 int ctx0, int coeff_type,
 | |
|                                 const VP8Matrix* const mtx,
 | |
|                                 int lambda) {
 | |
|   ProbaArray* const last_costs = it->enc_->proba_.coeffs_[coeff_type];
 | |
|   CostArray* const costs = it->enc_->proba_.level_cost_[coeff_type];
 | |
|   const int first = (coeff_type == 0) ? 1 : 0;
 | |
|   Node nodes[17][NUM_NODES];
 | |
|   int best_path[3] = {-1, -1, -1};   // store best-last/best-level/best-previous
 | |
|   score_t best_score;
 | |
|   int best_node;
 | |
|   int last = first - 1;
 | |
|   int n, m, p, nz;
 | |
| 
 | |
|   {
 | |
|     score_t cost;
 | |
|     score_t max_error;
 | |
|     const int thresh = mtx->q_[1] * mtx->q_[1] / 4;
 | |
|     const int last_proba = last_costs[VP8EncBands[first]][ctx0][0];
 | |
| 
 | |
|     // compute maximal distortion.
 | |
|     max_error = 0;
 | |
|     for (n = first; n < 16; ++n) {
 | |
|       const int j  = kZigzag[n];
 | |
|       const int err = in[j] * in[j];
 | |
|       max_error += kWeightTrellis[j] * err;
 | |
|       if (err > thresh) last = n;
 | |
|     }
 | |
|     // we don't need to go inspect up to n = 16 coeffs. We can just go up
 | |
|     // to last + 1 (inclusive) without losing much.
 | |
|     if (last < 15) ++last;
 | |
| 
 | |
|     // compute 'skip' score. This is the max score one can do.
 | |
|     cost = VP8BitCost(0, last_proba);
 | |
|     best_score = RDScoreTrellis(lambda, cost, max_error);
 | |
| 
 | |
|     // initialize source node.
 | |
|     n = first - 1;
 | |
|     for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
 | |
|       NODE(n, m).cost = 0;
 | |
|       NODE(n, m).error = max_error;
 | |
|       NODE(n, m).ctx = ctx0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // traverse trellis.
 | |
|   for (n = first; n <= last; ++n) {
 | |
|     const int j  = kZigzag[n];
 | |
|     const int Q  = mtx->q_[j];
 | |
|     const int iQ = mtx->iq_[j];
 | |
|     const int B = BIAS(0x00);     // neutral bias
 | |
|     // note: it's important to take sign of the _original_ coeff,
 | |
|     // so we don't have to consider level < 0 afterward.
 | |
|     const int sign = (in[j] < 0);
 | |
|     int coeff0 = (sign ? -in[j] : in[j]) + mtx->sharpen_[j];
 | |
|     int level0;
 | |
|     if (coeff0 > 2047) coeff0 = 2047;
 | |
| 
 | |
|     level0 = QUANTDIV(coeff0, iQ, B);
 | |
|     // test all alternate level values around level0.
 | |
|     for (m = -MIN_DELTA; m <= MAX_DELTA; ++m) {
 | |
|       Node* const cur = &NODE(n, m);
 | |
|       int delta_error, new_error;
 | |
|       score_t cur_score = MAX_COST;
 | |
|       int level = level0 + m;
 | |
|       int last_proba;
 | |
| 
 | |
|       cur->sign = sign;
 | |
|       cur->level = level;
 | |
|       cur->ctx = (level == 0) ? 0 : (level == 1) ? 1 : 2;
 | |
|       if (level >= 2048 || level < 0) {   // node is dead?
 | |
|         cur->cost = MAX_COST;
 | |
|         continue;
 | |
|       }
 | |
|       last_proba = last_costs[VP8EncBands[n + 1]][cur->ctx][0];
 | |
| 
 | |
|       // Compute delta_error = how much coding this level will
 | |
|       // subtract as distortion to max_error
 | |
|       new_error = coeff0 - level * Q;
 | |
|       delta_error =
 | |
|         kWeightTrellis[j] * (coeff0 * coeff0 - new_error * new_error);
 | |
| 
 | |
|       // Inspect all possible non-dead predecessors. Retain only the best one.
 | |
|       for (p = -MIN_DELTA; p <= MAX_DELTA; ++p) {
 | |
|         const Node* const prev = &NODE(n - 1, p);
 | |
|         const int prev_ctx = prev->ctx;
 | |
|         const uint16_t* const tcost = costs[VP8EncBands[n]][prev_ctx];
 | |
|         const score_t total_error = prev->error - delta_error;
 | |
|         score_t cost, base_cost, score;
 | |
| 
 | |
|         if (prev->cost >= MAX_COST) {   // dead node?
 | |
|           continue;
 | |
|         }
 | |
| 
 | |
|         // Base cost of both terminal/non-terminal
 | |
|         base_cost = prev->cost + VP8LevelCost(tcost, level);
 | |
| 
 | |
|         // Examine node assuming it's a non-terminal one.
 | |
|         cost = base_cost;
 | |
|         if (level && n < 15) {
 | |
|           cost += VP8BitCost(1, last_proba);
 | |
|         }
 | |
|         score = RDScoreTrellis(lambda, cost, total_error);
 | |
|         if (score < cur_score) {
 | |
|           cur_score = score;
 | |
|           cur->cost  = cost;
 | |
|           cur->error = total_error;
 | |
|           cur->prev  = p;
 | |
|         }
 | |
| 
 | |
|         // Now, record best terminal node (and thus best entry in the graph).
 | |
|         if (level) {
 | |
|           cost = base_cost;
 | |
|           if (n < 15) cost += VP8BitCost(0, last_proba);
 | |
|           score = RDScoreTrellis(lambda, cost, total_error);
 | |
|           if (score < best_score) {
 | |
|             best_score = score;
 | |
|             best_path[0] = n;   // best eob position
 | |
|             best_path[1] = m;   // best level
 | |
|             best_path[2] = p;   // best predecessor
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Fresh start
 | |
|   memset(in + first, 0, (16 - first) * sizeof(*in));
 | |
|   memset(out + first, 0, (16 - first) * sizeof(*out));
 | |
|   if (best_path[0] == -1) {
 | |
|     return 0;   // skip!
 | |
|   }
 | |
| 
 | |
|   // Unwind the best path.
 | |
|   // Note: best-prev on terminal node is not necessarily equal to the
 | |
|   // best_prev for non-terminal. So we patch best_path[2] in.
 | |
|   n = best_path[0];
 | |
|   best_node = best_path[1];
 | |
|   NODE(n, best_node).prev = best_path[2];   // force best-prev for terminal
 | |
|   nz = 0;
 | |
| 
 | |
|   for (; n >= first; --n) {
 | |
|     const Node* const node = &NODE(n, best_node);
 | |
|     const int j = kZigzag[n];
 | |
|     out[n] = node->sign ? -node->level : node->level;
 | |
|     nz |= (node->level != 0);
 | |
|     in[j] = out[n] * mtx->q_[j];
 | |
|     best_node = node->prev;
 | |
|   }
 | |
|   return nz;
 | |
| }
 | |
| 
 | |
| #undef NODE
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Performs: difference, transform, quantize, back-transform, add
 | |
| // all at once. Output is the reconstructed block in *yuv_out, and the
 | |
| // quantized levels in *levels.
 | |
| 
 | |
| static int ReconstructIntra16(VP8EncIterator* const it,
 | |
|                               VP8ModeScore* const rd,
 | |
|                               uint8_t* const yuv_out,
 | |
|                               int mode) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
 | |
|   const uint8_t* const src = it->yuv_in_ + Y_OFF;
 | |
|   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
 | |
|   int nz = 0;
 | |
|   int n;
 | |
|   int16_t tmp[16][16], dc_tmp[16];
 | |
| 
 | |
|   for (n = 0; n < 16; ++n) {
 | |
|     VP8FTransform(src + VP8Scan[n], ref + VP8Scan[n], tmp[n]);
 | |
|   }
 | |
|   VP8FTransformWHT(tmp[0], dc_tmp);
 | |
|   nz |= VP8EncQuantizeBlock(dc_tmp, rd->y_dc_levels, 0, &dqm->y2_) << 24;
 | |
| 
 | |
|   if (DO_TRELLIS_I16 && it->do_trellis_) {
 | |
|     int x, y;
 | |
|     VP8IteratorNzToBytes(it);
 | |
|     for (y = 0, n = 0; y < 4; ++y) {
 | |
|       for (x = 0; x < 4; ++x, ++n) {
 | |
|         const int ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|         const int non_zero =
 | |
|            TrellisQuantizeBlock(it, tmp[n], rd->y_ac_levels[n], ctx, 0,
 | |
|                                 &dqm->y1_, dqm->lambda_trellis_i16_);
 | |
|         it->top_nz_[x] = it->left_nz_[y] = non_zero;
 | |
|         nz |= non_zero << n;
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     for (n = 0; n < 16; ++n) {
 | |
|       nz |= VP8EncQuantizeBlock(tmp[n], rd->y_ac_levels[n], 1, &dqm->y1_) << n;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Transform back
 | |
|   VP8ITransformWHT(dc_tmp, tmp[0]);
 | |
|   for (n = 0; n < 16; n += 2) {
 | |
|     VP8ITransform(ref + VP8Scan[n], tmp[n], yuv_out + VP8Scan[n], 1);
 | |
|   }
 | |
| 
 | |
|   return nz;
 | |
| }
 | |
| 
 | |
| static int ReconstructIntra4(VP8EncIterator* const it,
 | |
|                              int16_t levels[16],
 | |
|                              const uint8_t* const src,
 | |
|                              uint8_t* const yuv_out,
 | |
|                              int mode) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
 | |
|   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
 | |
|   int nz = 0;
 | |
|   int16_t tmp[16];
 | |
| 
 | |
|   VP8FTransform(src, ref, tmp);
 | |
|   if (DO_TRELLIS_I4 && it->do_trellis_) {
 | |
|     const int x = it->i4_ & 3, y = it->i4_ >> 2;
 | |
|     const int ctx = it->top_nz_[x] + it->left_nz_[y];
 | |
|     nz = TrellisQuantizeBlock(it, tmp, levels, ctx, 3, &dqm->y1_,
 | |
|                               dqm->lambda_trellis_i4_);
 | |
|   } else {
 | |
|     nz = VP8EncQuantizeBlock(tmp, levels, 0, &dqm->y1_);
 | |
|   }
 | |
|   VP8ITransform(ref, tmp, yuv_out, 0);
 | |
|   return nz;
 | |
| }
 | |
| 
 | |
| static int ReconstructUV(VP8EncIterator* const it, VP8ModeScore* const rd,
 | |
|                          uint8_t* const yuv_out, int mode) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const uint8_t* const ref = it->yuv_p_ + VP8UVModeOffsets[mode];
 | |
|   const uint8_t* const src = it->yuv_in_ + U_OFF;
 | |
|   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
 | |
|   int nz = 0;
 | |
|   int n;
 | |
|   int16_t tmp[8][16];
 | |
| 
 | |
|   for (n = 0; n < 8; ++n) {
 | |
|     VP8FTransform(src + VP8Scan[16 + n], ref + VP8Scan[16 + n], tmp[n]);
 | |
|   }
 | |
|   if (DO_TRELLIS_UV && it->do_trellis_) {
 | |
|     int ch, x, y;
 | |
|     for (ch = 0, n = 0; ch <= 2; ch += 2) {
 | |
|       for (y = 0; y < 2; ++y) {
 | |
|         for (x = 0; x < 2; ++x, ++n) {
 | |
|           const int ctx = it->top_nz_[4 + ch + x] + it->left_nz_[4 + ch + y];
 | |
|           const int non_zero =
 | |
|             TrellisQuantizeBlock(it, tmp[n], rd->uv_levels[n], ctx, 2,
 | |
|                                  &dqm->uv_, dqm->lambda_trellis_uv_);
 | |
|           it->top_nz_[4 + ch + x] = it->left_nz_[4 + ch + y] = non_zero;
 | |
|           nz |= non_zero << n;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   } else {
 | |
|     for (n = 0; n < 8; ++n) {
 | |
|       nz |= VP8EncQuantizeBlock(tmp[n], rd->uv_levels[n], 0, &dqm->uv_) << n;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (n = 0; n < 8; n += 2) {
 | |
|     VP8ITransform(ref + VP8Scan[16 + n], tmp[n], yuv_out + VP8Scan[16 + n], 1);
 | |
|   }
 | |
|   return (nz << 16);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // RD-opt decision. Reconstruct each modes, evalue distortion and bit-cost.
 | |
| // Pick the mode is lower RD-cost = Rate + lamba * Distortion.
 | |
| 
 | |
| static void SwapPtr(uint8_t** a, uint8_t** b) {
 | |
|   uint8_t* const tmp = *a;
 | |
|   *a = *b;
 | |
|   *b = tmp;
 | |
| }
 | |
| 
 | |
| static void SwapOut(VP8EncIterator* const it) {
 | |
|   SwapPtr(&it->yuv_out_, &it->yuv_out2_);
 | |
| }
 | |
| 
 | |
| static void PickBestIntra16(VP8EncIterator* const it, VP8ModeScore* const rd) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
 | |
|   const int lambda = dqm->lambda_i16_;
 | |
|   const int tlambda = dqm->tlambda_;
 | |
|   const uint8_t* const src = it->yuv_in_ + Y_OFF;
 | |
|   VP8ModeScore rd16;
 | |
|   int mode;
 | |
| 
 | |
|   rd->mode_i16 = -1;
 | |
|   for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
 | |
|     uint8_t* const tmp_dst = it->yuv_out2_ + Y_OFF;  // scratch buffer
 | |
|     int nz;
 | |
| 
 | |
|     // Reconstruct
 | |
|     nz = ReconstructIntra16(it, &rd16, tmp_dst, mode);
 | |
| 
 | |
|     // Measure RD-score
 | |
|     rd16.D = VP8SSE16x16(src, tmp_dst);
 | |
|     rd16.SD = tlambda ? MULT_8B(tlambda, VP8TDisto16x16(src, tmp_dst, kWeightY))
 | |
|             : 0;
 | |
|     rd16.R = VP8GetCostLuma16(it, &rd16);
 | |
|     rd16.R += VP8FixedCostsI16[mode];
 | |
| 
 | |
|     // Since we always examine Intra16 first, we can overwrite *rd directly.
 | |
|     SetRDScore(lambda, &rd16);
 | |
|     if (mode == 0 || rd16.score < rd->score) {
 | |
|       CopyScore(rd, &rd16);
 | |
|       rd->mode_i16 = mode;
 | |
|       rd->nz = nz;
 | |
|       memcpy(rd->y_ac_levels, rd16.y_ac_levels, sizeof(rd16.y_ac_levels));
 | |
|       memcpy(rd->y_dc_levels, rd16.y_dc_levels, sizeof(rd16.y_dc_levels));
 | |
|       SwapOut(it);
 | |
|     }
 | |
|   }
 | |
|   SetRDScore(dqm->lambda_mode_, rd);   // finalize score for mode decision.
 | |
|   VP8SetIntra16Mode(it, rd->mode_i16);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| // return the cost array corresponding to the surrounding prediction modes.
 | |
| static const uint16_t* GetCostModeI4(VP8EncIterator* const it,
 | |
|                                      const uint8_t modes[16]) {
 | |
|   const int preds_w = it->enc_->preds_w_;
 | |
|   const int x = (it->i4_ & 3), y = it->i4_ >> 2;
 | |
|   const int left = (x == 0) ? it->preds_[y * preds_w - 1] : modes[it->i4_ - 1];
 | |
|   const int top = (y == 0) ? it->preds_[-preds_w + x] : modes[it->i4_ - 4];
 | |
|   return VP8FixedCostsI4[top][left];
 | |
| }
 | |
| 
 | |
| static int PickBestIntra4(VP8EncIterator* const it, VP8ModeScore* const rd) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
 | |
|   const int lambda = dqm->lambda_i4_;
 | |
|   const int tlambda = dqm->tlambda_;
 | |
|   const uint8_t* const src0 = it->yuv_in_ + Y_OFF;
 | |
|   uint8_t* const best_blocks = it->yuv_out2_ + Y_OFF;
 | |
|   int total_header_bits = 0;
 | |
|   VP8ModeScore rd_best;
 | |
| 
 | |
|   if (enc->max_i4_header_bits_ == 0) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   InitScore(&rd_best);
 | |
|   rd_best.score = 211;  // '211' is the value of VP8BitCost(0, 145)
 | |
|   VP8IteratorStartI4(it);
 | |
|   do {
 | |
|     VP8ModeScore rd_i4;
 | |
|     int mode;
 | |
|     int best_mode = -1;
 | |
|     const uint8_t* const src = src0 + VP8Scan[it->i4_];
 | |
|     const uint16_t* const mode_costs = GetCostModeI4(it, rd->modes_i4);
 | |
|     uint8_t* best_block = best_blocks + VP8Scan[it->i4_];
 | |
|     uint8_t* tmp_dst = it->yuv_p_ + I4TMP;    // scratch buffer.
 | |
| 
 | |
|     InitScore(&rd_i4);
 | |
|     VP8MakeIntra4Preds(it);
 | |
|     for (mode = 0; mode < NUM_BMODES; ++mode) {
 | |
|       VP8ModeScore rd_tmp;
 | |
|       int16_t tmp_levels[16];
 | |
| 
 | |
|       // Reconstruct
 | |
|       rd_tmp.nz =
 | |
|           ReconstructIntra4(it, tmp_levels, src, tmp_dst, mode) << it->i4_;
 | |
| 
 | |
|       // Compute RD-score
 | |
|       rd_tmp.D = VP8SSE4x4(src, tmp_dst);
 | |
|       rd_tmp.SD =
 | |
|           tlambda ? MULT_8B(tlambda, VP8TDisto4x4(src, tmp_dst, kWeightY))
 | |
|                   : 0;
 | |
|       rd_tmp.R = VP8GetCostLuma4(it, tmp_levels);
 | |
|       rd_tmp.R += mode_costs[mode];
 | |
| 
 | |
|       SetRDScore(lambda, &rd_tmp);
 | |
|       if (best_mode < 0 || rd_tmp.score < rd_i4.score) {
 | |
|         CopyScore(&rd_i4, &rd_tmp);
 | |
|         best_mode = mode;
 | |
|         SwapPtr(&tmp_dst, &best_block);
 | |
|         memcpy(rd_best.y_ac_levels[it->i4_], tmp_levels, sizeof(tmp_levels));
 | |
|       }
 | |
|     }
 | |
|     SetRDScore(dqm->lambda_mode_, &rd_i4);
 | |
|     AddScore(&rd_best, &rd_i4);
 | |
|     total_header_bits += mode_costs[best_mode];
 | |
|     if (rd_best.score >= rd->score ||
 | |
|         total_header_bits > enc->max_i4_header_bits_) {
 | |
|       return 0;
 | |
|     }
 | |
|     // Copy selected samples if not in the right place already.
 | |
|     if (best_block != best_blocks + VP8Scan[it->i4_])
 | |
|       VP8Copy4x4(best_block, best_blocks + VP8Scan[it->i4_]);
 | |
|     rd->modes_i4[it->i4_] = best_mode;
 | |
|     it->top_nz_[it->i4_ & 3] = it->left_nz_[it->i4_ >> 2] = (rd_i4.nz ? 1 : 0);
 | |
|   } while (VP8IteratorRotateI4(it, best_blocks));
 | |
| 
 | |
|   // finalize state
 | |
|   CopyScore(rd, &rd_best);
 | |
|   VP8SetIntra4Mode(it, rd->modes_i4);
 | |
|   SwapOut(it);
 | |
|   memcpy(rd->y_ac_levels, rd_best.y_ac_levels, sizeof(rd->y_ac_levels));
 | |
|   return 1;   // select intra4x4 over intra16x16
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| 
 | |
| static void PickBestUV(VP8EncIterator* const it, VP8ModeScore* const rd) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const VP8SegmentInfo* const dqm = &enc->dqm_[it->mb_->segment_];
 | |
|   const int lambda = dqm->lambda_uv_;
 | |
|   const uint8_t* const src = it->yuv_in_ + U_OFF;
 | |
|   uint8_t* const tmp_dst = it->yuv_out2_ + U_OFF;  // scratch buffer
 | |
|   uint8_t* const dst0 = it->yuv_out_ + U_OFF;
 | |
|   VP8ModeScore rd_best;
 | |
|   int mode;
 | |
| 
 | |
|   rd->mode_uv = -1;
 | |
|   InitScore(&rd_best);
 | |
|   for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
 | |
|     VP8ModeScore rd_uv;
 | |
| 
 | |
|     // Reconstruct
 | |
|     rd_uv.nz = ReconstructUV(it, &rd_uv, tmp_dst, mode);
 | |
| 
 | |
|     // Compute RD-score
 | |
|     rd_uv.D  = VP8SSE16x8(src, tmp_dst);
 | |
|     rd_uv.SD = 0;    // TODO: should we call TDisto? it tends to flatten areas.
 | |
|     rd_uv.R  = VP8GetCostUV(it, &rd_uv);
 | |
|     rd_uv.R += VP8FixedCostsUV[mode];
 | |
| 
 | |
|     SetRDScore(lambda, &rd_uv);
 | |
|     if (mode == 0 || rd_uv.score < rd_best.score) {
 | |
|       CopyScore(&rd_best, &rd_uv);
 | |
|       rd->mode_uv = mode;
 | |
|       memcpy(rd->uv_levels, rd_uv.uv_levels, sizeof(rd->uv_levels));
 | |
|       memcpy(dst0, tmp_dst, UV_SIZE);   //  TODO: SwapUVOut() ?
 | |
|     }
 | |
|   }
 | |
|   VP8SetIntraUVMode(it, rd->mode_uv);
 | |
|   AddScore(rd, &rd_best);
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Final reconstruction and quantization.
 | |
| 
 | |
| static void SimpleQuantize(VP8EncIterator* const it, VP8ModeScore* const rd) {
 | |
|   const VP8Encoder* const enc = it->enc_;
 | |
|   const int is_i16 = (it->mb_->type_ == 1);
 | |
|   int nz = 0;
 | |
| 
 | |
|   if (is_i16) {
 | |
|     nz = ReconstructIntra16(it, rd, it->yuv_out_ + Y_OFF, it->preds_[0]);
 | |
|   } else {
 | |
|     VP8IteratorStartI4(it);
 | |
|     do {
 | |
|       const int mode =
 | |
|           it->preds_[(it->i4_ & 3) + (it->i4_ >> 2) * enc->preds_w_];
 | |
|       const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
 | |
|       uint8_t* const dst = it->yuv_out_ + Y_OFF + VP8Scan[it->i4_];
 | |
|       VP8MakeIntra4Preds(it);
 | |
|       nz |= ReconstructIntra4(it, rd->y_ac_levels[it->i4_],
 | |
|                               src, dst, mode) << it->i4_;
 | |
|     } while (VP8IteratorRotateI4(it, it->yuv_out_ + Y_OFF));
 | |
|   }
 | |
| 
 | |
|   nz |= ReconstructUV(it, rd, it->yuv_out_ + U_OFF, it->mb_->uv_mode_);
 | |
|   rd->nz = nz;
 | |
| }
 | |
| 
 | |
| // Refine intra16/intra4 sub-modes based on distortion only (not rate).
 | |
| static void DistoRefine(VP8EncIterator* const it, int try_both_i4_i16) {
 | |
|   const int is_i16 = (it->mb_->type_ == 1);
 | |
|   score_t best_score = MAX_COST;
 | |
| 
 | |
|   if (try_both_i4_i16 || is_i16) {
 | |
|     int mode;
 | |
|     int best_mode = -1;
 | |
|     for (mode = 0; mode < NUM_PRED_MODES; ++mode) {
 | |
|       const uint8_t* const ref = it->yuv_p_ + VP8I16ModeOffsets[mode];
 | |
|       const uint8_t* const src = it->yuv_in_ + Y_OFF;
 | |
|       const score_t score = VP8SSE16x16(src, ref);
 | |
|       if (score < best_score) {
 | |
|         best_mode = mode;
 | |
|         best_score = score;
 | |
|       }
 | |
|     }
 | |
|     VP8SetIntra16Mode(it, best_mode);
 | |
|   }
 | |
|   if (try_both_i4_i16 || !is_i16) {
 | |
|     uint8_t modes_i4[16];
 | |
|     // We don't evaluate the rate here, but just account for it through a
 | |
|     // constant penalty (i4 mode usually needs more bits compared to i16).
 | |
|     score_t score_i4 = (score_t)I4_PENALTY;
 | |
| 
 | |
|     VP8IteratorStartI4(it);
 | |
|     do {
 | |
|       int mode;
 | |
|       int best_sub_mode = -1;
 | |
|       score_t best_sub_score = MAX_COST;
 | |
|       const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_];
 | |
| 
 | |
|       // TODO(skal): we don't really need the prediction pixels here,
 | |
|       // but just the distortion against 'src'.
 | |
|       VP8MakeIntra4Preds(it);
 | |
|       for (mode = 0; mode < NUM_BMODES; ++mode) {
 | |
|         const uint8_t* const ref = it->yuv_p_ + VP8I4ModeOffsets[mode];
 | |
|         const score_t score = VP8SSE4x4(src, ref);
 | |
|         if (score < best_sub_score) {
 | |
|           best_sub_mode = mode;
 | |
|           best_sub_score = score;
 | |
|         }
 | |
|       }
 | |
|       modes_i4[it->i4_] = best_sub_mode;
 | |
|       score_i4 += best_sub_score;
 | |
|       if (score_i4 >= best_score) break;
 | |
|     } while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF));
 | |
|     if (score_i4 < best_score) {
 | |
|       VP8SetIntra4Mode(it, modes_i4);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------------
 | |
| // Entry point
 | |
| 
 | |
| int VP8Decimate(VP8EncIterator* const it, VP8ModeScore* const rd,
 | |
|                 VP8RDLevel rd_opt) {
 | |
|   int is_skipped;
 | |
|   const int method = it->enc_->method_;
 | |
| 
 | |
|   InitScore(rd);
 | |
| 
 | |
|   // We can perform predictions for Luma16x16 and Chroma8x8 already.
 | |
|   // Luma4x4 predictions needs to be done as-we-go.
 | |
|   VP8MakeLuma16Preds(it);
 | |
|   VP8MakeChroma8Preds(it);
 | |
| 
 | |
|   if (rd_opt > RD_OPT_NONE) {
 | |
|     it->do_trellis_ = (rd_opt >= RD_OPT_TRELLIS_ALL);
 | |
|     PickBestIntra16(it, rd);
 | |
|     if (method >= 2) {
 | |
|       PickBestIntra4(it, rd);
 | |
|     }
 | |
|     PickBestUV(it, rd);
 | |
|     if (rd_opt == RD_OPT_TRELLIS) {   // finish off with trellis-optim now
 | |
|       it->do_trellis_ = 1;
 | |
|       SimpleQuantize(it, rd);
 | |
|     }
 | |
|   } else {
 | |
|     // For method == 2, pick the best intra4/intra16 based on SSE (~tad slower).
 | |
|     // For method <= 1, we refine intra4 or intra16 (but don't re-examine mode).
 | |
|     DistoRefine(it, (method >= 2));
 | |
|     SimpleQuantize(it, rd);
 | |
|   }
 | |
|   is_skipped = (rd->nz == 0);
 | |
|   VP8SetSkip(it, is_skipped);
 | |
|   return is_skipped;
 | |
| }
 | |
| 
 | |
| #if defined(__cplusplus) || defined(c_plusplus)
 | |
| }    // extern "C"
 | |
| #endif
 | 
