 6f3163f62d
			
		
	
	6f3163f62d
	
	
	
		
			
			Added the defaultNorm() method to the DescriptorExtractor class. This method returns the default norm type for each descriptor type. The tests and C/C++ samples were updated to get the norm type directly from the DescriptorExtractor inherited classes. This was reported in feature report #2182 (http://code.opencv.org/issues/2182). It will make it possible to get the norm type usually applied matching method for each descriptor, instead of passing it manually.
		
			
				
	
	
		
			99 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			99 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| #include <iostream>
 | |
| 
 | |
| #include "opencv2/opencv_modules.hpp"
 | |
| 
 | |
| #ifdef HAVE_OPENCV_NONFREE
 | |
| 
 | |
| #include "opencv2/core/core.hpp"
 | |
| #include "opencv2/features2d/features2d.hpp"
 | |
| #include "opencv2/highgui/highgui.hpp"
 | |
| #include "opencv2/cudafeatures2d.hpp"
 | |
| #include "opencv2/nonfree/cuda.hpp"
 | |
| 
 | |
| using namespace std;
 | |
| using namespace cv;
 | |
| using namespace cv::cuda;
 | |
| 
 | |
| static void help()
 | |
| {
 | |
|     cout << "\nThis program demonstrates using SURF_CUDA features detector, descriptor extractor and BruteForceMatcher_CUDA" << endl;
 | |
|     cout << "\nUsage:\n\tmatcher_simple_gpu --left <image1> --right <image2>" << endl;
 | |
| }
 | |
| 
 | |
| int main(int argc, char* argv[])
 | |
| {
 | |
|     if (argc != 5)
 | |
|     {
 | |
|         help();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     GpuMat img1, img2;
 | |
|     for (int i = 1; i < argc; ++i)
 | |
|     {
 | |
|         if (string(argv[i]) == "--left")
 | |
|         {
 | |
|             img1.upload(imread(argv[++i], IMREAD_GRAYSCALE));
 | |
|             CV_Assert(!img1.empty());
 | |
|         }
 | |
|         else if (string(argv[i]) == "--right")
 | |
|         {
 | |
|             img2.upload(imread(argv[++i], IMREAD_GRAYSCALE));
 | |
|             CV_Assert(!img2.empty());
 | |
|         }
 | |
|         else if (string(argv[i]) == "--help")
 | |
|         {
 | |
|             help();
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cv::cuda::printShortCudaDeviceInfo(cv::cuda::getDevice());
 | |
| 
 | |
|     SURF_CUDA surf;
 | |
| 
 | |
|     // detecting keypoints & computing descriptors
 | |
|     GpuMat keypoints1GPU, keypoints2GPU;
 | |
|     GpuMat descriptors1GPU, descriptors2GPU;
 | |
|     surf(img1, GpuMat(), keypoints1GPU, descriptors1GPU);
 | |
|     surf(img2, GpuMat(), keypoints2GPU, descriptors2GPU);
 | |
| 
 | |
|     cout << "FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl;
 | |
|     cout << "FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl;
 | |
| 
 | |
|     // matching descriptors
 | |
|     BFMatcher_CUDA matcher(surf.defaultNorm());
 | |
|     GpuMat trainIdx, distance;
 | |
|     matcher.matchSingle(descriptors1GPU, descriptors2GPU, trainIdx, distance);
 | |
| 
 | |
|     // downloading results
 | |
|     vector<KeyPoint> keypoints1, keypoints2;
 | |
|     vector<float> descriptors1, descriptors2;
 | |
|     vector<DMatch> matches;
 | |
|     surf.downloadKeypoints(keypoints1GPU, keypoints1);
 | |
|     surf.downloadKeypoints(keypoints2GPU, keypoints2);
 | |
|     surf.downloadDescriptors(descriptors1GPU, descriptors1);
 | |
|     surf.downloadDescriptors(descriptors2GPU, descriptors2);
 | |
|     BFMatcher_CUDA::matchDownload(trainIdx, distance, matches);
 | |
| 
 | |
|     // drawing the results
 | |
|     Mat img_matches;
 | |
|     drawMatches(Mat(img1), keypoints1, Mat(img2), keypoints2, matches, img_matches);
 | |
| 
 | |
|     namedWindow("matches", 0);
 | |
|     imshow("matches", img_matches);
 | |
|     waitKey(0);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| int main()
 | |
| {
 | |
|     std::cerr << "OpenCV was built without nonfree module" << std::endl;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #endif
 |