260 lines
7.2 KiB
C++
260 lines
7.2 KiB
C++
/***********************************************************************
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
|
|
* Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
|
|
*
|
|
* THE BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*************************************************************************/
|
|
|
|
#ifndef _OPENCV_FLANN_BASE_HPP_
|
|
#define _OPENCV_FLANN_BASE_HPP_
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <cassert>
|
|
#include <cstdio>
|
|
|
|
#include "opencv2/flann/general.h"
|
|
#include "opencv2/flann/matrix.h"
|
|
#include "opencv2/flann/result_set.h"
|
|
#include "opencv2/flann/index_testing.h"
|
|
#include "opencv2/flann/object_factory.h"
|
|
#include "opencv2/flann/saving.h"
|
|
|
|
#include "opencv2/flann/all_indices.h"
|
|
|
|
namespace cvflann
|
|
{
|
|
|
|
|
|
/**
|
|
Sets the log level used for all flann functions
|
|
|
|
Params:
|
|
level = verbosity level
|
|
*/
|
|
CV_EXPORTS void log_verbosity(int level);
|
|
|
|
|
|
/**
|
|
* Sets the distance type to use throughout FLANN.
|
|
* If distance type specified is MINKOWSKI, the second argument
|
|
* specifies which order the minkowski distance should have.
|
|
*/
|
|
CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
|
|
|
|
|
|
struct CV_EXPORTS SavedIndexParams : public IndexParams {
|
|
SavedIndexParams(std::string filename_) : IndexParams(FLANN_INDEX_SAVED), filename(filename_) {}
|
|
|
|
std::string filename; // filename of the stored index
|
|
|
|
void print() const
|
|
{
|
|
logger().info("Index type: %d\n",(int)algorithm);
|
|
logger().info("Filename: %s\n", filename.c_str());
|
|
}
|
|
};
|
|
|
|
template<typename T>
|
|
class CV_EXPORTS Index {
|
|
NNIndex<T>* nnIndex;
|
|
bool built;
|
|
|
|
public:
|
|
Index(const Matrix<T>& features, const IndexParams& params);
|
|
|
|
~Index();
|
|
|
|
void buildIndex();
|
|
|
|
void knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& params);
|
|
|
|
int radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& params);
|
|
|
|
void save(std::string filename);
|
|
|
|
int veclen() const;
|
|
|
|
int size() const;
|
|
|
|
NNIndex<T>* getIndex() { return nnIndex; }
|
|
|
|
const IndexParams* getIndexParameters() { return nnIndex->getParameters(); }
|
|
};
|
|
|
|
|
|
template<typename T>
|
|
NNIndex<T>* load_saved_index(const Matrix<T>& dataset, const std::string& filename)
|
|
{
|
|
FILE* fin = fopen(filename.c_str(), "rb");
|
|
if (fin==NULL) {
|
|
return NULL;
|
|
}
|
|
IndexHeader header = load_header(fin);
|
|
if (header.data_type!=Datatype<T>::type()) {
|
|
throw FLANNException("Datatype of saved index is different than of the one to be created.");
|
|
}
|
|
if (size_t(header.rows)!=dataset.rows || size_t(header.cols)!=dataset.cols) {
|
|
throw FLANNException("The index saved belongs to a different dataset");
|
|
}
|
|
|
|
IndexParams* params = ParamsFactory_instance().create(header.index_type);
|
|
NNIndex<T>* nnIndex = create_index_by_type(dataset, *params);
|
|
nnIndex->loadIndex(fin);
|
|
fclose(fin);
|
|
|
|
return nnIndex;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
Index<T>::Index(const Matrix<T>& dataset, const IndexParams& params)
|
|
{
|
|
flann_algorithm_t index_type = params.getIndexType();
|
|
built = false;
|
|
|
|
if (index_type==FLANN_INDEX_SAVED) {
|
|
nnIndex = load_saved_index(dataset, ((const SavedIndexParams&)params).filename);
|
|
built = true;
|
|
}
|
|
else {
|
|
nnIndex = create_index_by_type(dataset, params);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
Index<T>::~Index()
|
|
{
|
|
delete nnIndex;
|
|
}
|
|
|
|
template<typename T>
|
|
void Index<T>::buildIndex()
|
|
{
|
|
if (!built) {
|
|
nnIndex->buildIndex();
|
|
built = true;
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
void Index<T>::knnSearch(const Matrix<T>& queries, Matrix<int>& indices, Matrix<float>& dists, int knn, const SearchParams& searchParams)
|
|
{
|
|
if (!built) {
|
|
throw FLANNException("You must build the index before searching.");
|
|
}
|
|
assert(queries.cols==nnIndex->veclen());
|
|
assert(indices.rows>=queries.rows);
|
|
assert(dists.rows>=queries.rows);
|
|
assert(int(indices.cols)>=knn);
|
|
assert(int(dists.cols)>=knn);
|
|
|
|
KNNResultSet<T> resultSet(knn);
|
|
|
|
for (size_t i = 0; i < queries.rows; i++) {
|
|
T* target = queries[i];
|
|
resultSet.init(target, (int)queries.cols);
|
|
|
|
nnIndex->findNeighbors(resultSet, target, searchParams);
|
|
|
|
int* neighbors = resultSet.getNeighbors();
|
|
float* distances = resultSet.getDistances();
|
|
memcpy(indices[i], neighbors, knn*sizeof(int));
|
|
memcpy(dists[i], distances, knn*sizeof(float));
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
int Index<T>::radiusSearch(const Matrix<T>& query, Matrix<int>& indices, Matrix<float>& dists, float radius, const SearchParams& searchParams)
|
|
{
|
|
if (!built) {
|
|
throw FLANNException("You must build the index before searching.");
|
|
}
|
|
if (query.rows!=1) {
|
|
fprintf(stderr, "I can only search one feature at a time for range search\n");
|
|
return -1;
|
|
}
|
|
assert(query.cols==nnIndex->veclen());
|
|
|
|
RadiusResultSet<T> resultSet(radius);
|
|
resultSet.init(query.data, (int)query.cols);
|
|
nnIndex->findNeighbors(resultSet,query.data,searchParams);
|
|
|
|
// TODO: optimise here
|
|
int* neighbors = resultSet.getNeighbors();
|
|
float* distances = resultSet.getDistances();
|
|
size_t count_nn = std::min(resultSet.size(), indices.cols);
|
|
|
|
assert (dists.cols>=count_nn);
|
|
|
|
for (size_t i=0;i<count_nn;++i) {
|
|
indices[0][i] = neighbors[i];
|
|
dists[0][i] = distances[i];
|
|
}
|
|
|
|
return (int)count_nn;
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
void Index<T>::save(std::string filename)
|
|
{
|
|
FILE* fout = fopen(filename.c_str(), "wb");
|
|
if (fout==NULL) {
|
|
throw FLANNException("Cannot open file");
|
|
}
|
|
save_header(fout, *nnIndex);
|
|
nnIndex->saveIndex(fout);
|
|
fclose(fout);
|
|
}
|
|
|
|
|
|
template<typename T>
|
|
int Index<T>::size() const
|
|
{
|
|
return nnIndex->size();
|
|
}
|
|
|
|
template<typename T>
|
|
int Index<T>::veclen() const
|
|
{
|
|
return nnIndex->veclen();
|
|
}
|
|
|
|
|
|
template <typename ELEM_TYPE, typename DIST_TYPE>
|
|
int hierarchicalClustering(const Matrix<ELEM_TYPE>& features, Matrix<DIST_TYPE>& centers, const KMeansIndexParams& params)
|
|
{
|
|
KMeansIndex<ELEM_TYPE, DIST_TYPE> kmeans(features, params);
|
|
kmeans.buildIndex();
|
|
|
|
int clusterNum = kmeans.getClusterCenters(centers);
|
|
return clusterNum;
|
|
}
|
|
|
|
} // namespace cvflann
|
|
#endif /* _OPENCV_FLANN_BASE_HPP_ */
|