opencv/modules/stitching/warpers.cpp
2011-05-04 11:09:42 +00:00

115 lines
3.9 KiB
C++

#include "warpers.hpp"
using namespace std;
using namespace cv;
Ptr<Warper> Warper::createByCameraFocal(int focal, int type)
{
if (type == PLANE)
return new PlaneWarper(focal);
if (type == CYLINDRICAL)
return new CylindricalWarper(focal);
if (type == SPHERICAL)
return new SphericalWarper(focal);
CV_Error(CV_StsBadArg, "unsupported warping type");
return NULL;
}
void ProjectorBase::setCameraMatrix(const Mat &M)
{
CV_Assert(M.size() == Size(3, 3));
CV_Assert(M.type() == CV_32F);
m[0] = M.at<float>(0, 0); m[1] = M.at<float>(0, 1); m[2] = M.at<float>(0, 2);
m[3] = M.at<float>(1, 0); m[4] = M.at<float>(1, 1); m[5] = M.at<float>(1, 2);
m[6] = M.at<float>(2, 0); m[7] = M.at<float>(2, 1); m[8] = M.at<float>(2, 2);
Mat M_inv = M.inv();
minv[0] = M_inv.at<float>(0, 0); minv[1] = M_inv.at<float>(0, 1); minv[2] = M_inv.at<float>(0, 2);
minv[3] = M_inv.at<float>(1, 0); minv[4] = M_inv.at<float>(1, 1); minv[5] = M_inv.at<float>(1, 2);
minv[6] = M_inv.at<float>(2, 0); minv[7] = M_inv.at<float>(2, 1); minv[8] = M_inv.at<float>(2, 2);
}
Point Warper::operator ()(const Mat &src, float focal, const Mat& M, Mat &dst,
int interp_mode, int border_mode)
{
return warp(src, focal, M, dst, interp_mode, border_mode);
}
void PlaneWarper::detectResultRoi(Point &dst_tl, Point &dst_br)
{
float tl_uf = numeric_limits<float>::max();
float tl_vf = numeric_limits<float>::max();
float br_uf = -numeric_limits<float>::max();
float br_vf = -numeric_limits<float>::max();
float u, v;
projector_.mapForward(0, 0, u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
projector_.mapForward(0, static_cast<float>(src_size_.height - 1), u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
projector_.mapForward(static_cast<float>(src_size_.width - 1), 0, u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
projector_.mapForward(static_cast<float>(src_size_.width - 1), static_cast<float>(src_size_.height - 1), u, v);
tl_uf = min(tl_uf, u); tl_vf = min(tl_vf, v);
br_uf = max(br_uf, u); br_vf = max(br_vf, v);
dst_tl.x = static_cast<int>(tl_uf);
dst_tl.y = static_cast<int>(tl_vf);
dst_br.x = static_cast<int>(br_uf);
dst_br.y = static_cast<int>(br_vf);
}
void SphericalWarper::detectResultRoi(Point &dst_tl, Point &dst_br)
{
detectResultRoiByBorder(dst_tl, dst_br);
float tl_uf = static_cast<float>(dst_tl.x);
float tl_vf = static_cast<float>(dst_tl.y);
float br_uf = static_cast<float>(dst_br.x);
float br_vf = static_cast<float>(dst_br.y);
float x = projector_.minv[1];
float y = projector_.minv[4];
float z = projector_.minv[7];
if (y > 0.f)
{
x = projector_.focal * x / z + src_size_.width * 0.5f;
y = projector_.focal * y / z + src_size_.height * 0.5f;
if (x > 0.f && x < src_size_.width && y > 0.f && y < src_size_.height)
{
tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(CV_PI * projector_.scale));
br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(CV_PI * projector_.scale));
}
}
x = projector_.minv[1];
y = -projector_.minv[4];
z = projector_.minv[7];
if (y > 0.f)
{
x = projector_.focal * x / z + src_size_.width * 0.5f;
y = projector_.focal * y / z + src_size_.height * 0.5f;
if (x > 0.f && x < src_size_.width && y > 0.f && y < src_size_.height)
{
tl_uf = min(tl_uf, 0.f); tl_vf = min(tl_vf, static_cast<float>(0));
br_uf = max(br_uf, 0.f); br_vf = max(br_vf, static_cast<float>(0));
}
}
dst_tl.x = static_cast<int>(tl_uf);
dst_tl.y = static_cast<int>(tl_vf);
dst_br.x = static_cast<int>(br_uf);
dst_br.y = static_cast<int>(br_vf);
}