240 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			240 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*M///////////////////////////////////////////////////////////////////////////////////////
 | 
						|
//
 | 
						|
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | 
						|
//
 | 
						|
//  By downloading, copying, installing or using the software you agree to this license.
 | 
						|
//  If you do not agree to this license, do not download, install,
 | 
						|
//  copy or use the software.
 | 
						|
//
 | 
						|
//
 | 
						|
//                          License Agreement
 | 
						|
//                For Open Source Computer Vision Library
 | 
						|
//
 | 
						|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
 | 
						|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
 | 
						|
// Third party copyrights are property of their respective owners.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without modification,
 | 
						|
// are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistribution's of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//
 | 
						|
//   * Redistribution's in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//
 | 
						|
//   * The name of the copyright holders may not be used to endorse or promote products
 | 
						|
//     derived from this software without specific prior written permission.
 | 
						|
//
 | 
						|
// This software is provided by the copyright holders and contributors "as is" and
 | 
						|
// any express or implied warranties, including, but not limited to, the implied
 | 
						|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
 | 
						|
// In no event shall the Intel Corporation or contributors be liable for any direct,
 | 
						|
// indirect, incidental, special, exemplary, or consequential damages
 | 
						|
// (including, but not limited to, procurement of substitute goods or services;
 | 
						|
// loss of use, data, or profits; or business interruption) however caused
 | 
						|
// and on any theory of liability, whether in contract, strict liability,
 | 
						|
// or tort (including negligence or otherwise) arising in any way out of
 | 
						|
// the use of this software, even if advised of the possibility of such damage.
 | 
						|
//
 | 
						|
//M*/
 | 
						|
 | 
						|
#include "exposure_compensate.hpp"
 | 
						|
#include "util.hpp"
 | 
						|
 | 
						|
using namespace std;
 | 
						|
using namespace cv;
 | 
						|
using namespace cv::gpu;
 | 
						|
 | 
						|
 | 
						|
Ptr<ExposureCompensator> ExposureCompensator::createDefault(int type)
 | 
						|
{
 | 
						|
    if (type == NO)
 | 
						|
        return new NoExposureCompensator();
 | 
						|
    if (type == GAIN)
 | 
						|
        return new GainCompensator();
 | 
						|
    if (type == GAIN_BLOCKS)
 | 
						|
        return new BlocksGainCompensator();
 | 
						|
    CV_Error(CV_StsBadArg, "unsupported exposure compensation method");
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void ExposureCompensator::feed(const vector<Point> &corners, const vector<Mat> &images, 
 | 
						|
                               const vector<Mat> &masks)
 | 
						|
{
 | 
						|
    vector<pair<Mat,uchar> > level_masks;
 | 
						|
    for (size_t i = 0; i < masks.size(); ++i)
 | 
						|
        level_masks.push_back(make_pair(masks[i], 255));
 | 
						|
    feed(corners, images, level_masks);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GainCompensator::feed(const vector<Point> &corners, const vector<Mat> &images, 
 | 
						|
                           const vector<pair<Mat,uchar> > &masks)
 | 
						|
{
 | 
						|
    CV_Assert(corners.size() == images.size() && images.size() == masks.size());
 | 
						|
 | 
						|
    const int num_images = static_cast<int>(images.size());
 | 
						|
    Mat_<int> N(num_images, num_images); N.setTo(0);
 | 
						|
    Mat_<double> I(num_images, num_images); I.setTo(0);
 | 
						|
 | 
						|
    Rect dst_roi = resultRoi(corners, images);
 | 
						|
    Mat subimg1, subimg2;
 | 
						|
    Mat_<uchar> submask1, submask2, intersect;
 | 
						|
 | 
						|
    for (int i = 0; i < num_images; ++i)
 | 
						|
    {
 | 
						|
        for (int j = i; j < num_images; ++j)
 | 
						|
        {
 | 
						|
            Rect roi;
 | 
						|
            if (overlapRoi(corners[i], corners[j], images[i].size(), images[j].size(), roi))
 | 
						|
            {
 | 
						|
                subimg1 = images[i](Rect(roi.tl() - corners[i], roi.br() - corners[i]));
 | 
						|
                subimg2 = images[j](Rect(roi.tl() - corners[j], roi.br() - corners[j]));
 | 
						|
 | 
						|
                submask1 = masks[i].first(Rect(roi.tl() - corners[i], roi.br() - corners[i]));
 | 
						|
                submask2 = masks[j].first(Rect(roi.tl() - corners[j], roi.br() - corners[j]));
 | 
						|
                intersect = (submask1 == masks[i].second) & (submask2 == masks[j].second);
 | 
						|
 | 
						|
                N(i, j) = N(j, i) = max(1, countNonZero(intersect));
 | 
						|
 | 
						|
                double Isum1 = 0, Isum2 = 0;
 | 
						|
                for (int y = 0; y < roi.height; ++y)
 | 
						|
                {
 | 
						|
                    const Point3_<uchar>* r1 = subimg1.ptr<Point3_<uchar> >(y);
 | 
						|
                    const Point3_<uchar>* r2 = subimg2.ptr<Point3_<uchar> >(y);
 | 
						|
                    for (int x = 0; x < roi.width; ++x)
 | 
						|
                    {
 | 
						|
                        if (intersect(y, x))
 | 
						|
                        {
 | 
						|
                            Isum1 += sqrt(static_cast<double>(sqr(r1[x].x) + sqr(r1[x].y) + sqr(r1[x].z)));
 | 
						|
                            Isum2 += sqrt(static_cast<double>(sqr(r2[x].x) + sqr(r2[x].y) + sqr(r2[x].z)));
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                I(i, j) = Isum1 / N(i, j);
 | 
						|
                I(j, i) = Isum2 / N(i, j);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    double alpha = 0.01;
 | 
						|
    double beta = 100;
 | 
						|
 | 
						|
    Mat_<double> A(num_images, num_images); A.setTo(0);
 | 
						|
    Mat_<double> b(num_images, 1); b.setTo(0);
 | 
						|
    for (int i = 0; i < num_images; ++i)
 | 
						|
    {
 | 
						|
        for (int j = 0; j < num_images; ++j)
 | 
						|
        {
 | 
						|
            b(i, 0) += beta * N(i, j);
 | 
						|
            A(i, i) += beta * N(i, j);
 | 
						|
            if (j == i) continue;
 | 
						|
            A(i, i) += 2 * alpha * I(i, j) * I(i, j) * N(i, j);
 | 
						|
            A(i, j) -= 2 * alpha * I(i, j) * I(j, i) * N(i, j);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    solve(A, b, gains_);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void GainCompensator::apply(int index, Point /*corner*/, Mat &image, const Mat &/*mask*/)
 | 
						|
{
 | 
						|
    image *= gains_(index, 0);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
vector<double> GainCompensator::gains() const
 | 
						|
{
 | 
						|
    vector<double> gains_vec(gains_.rows);
 | 
						|
    for (int i = 0; i < gains_.rows; ++i)
 | 
						|
        gains_vec[i] = gains_(i, 0);
 | 
						|
    return gains_vec;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BlocksGainCompensator::feed(const vector<Point> &corners, const vector<Mat> &images, 
 | 
						|
                                const vector<pair<Mat,uchar> > &masks)
 | 
						|
{
 | 
						|
    CV_Assert(corners.size() == images.size() && images.size() == masks.size());
 | 
						|
 | 
						|
    const int num_images = static_cast<int>(images.size());
 | 
						|
 | 
						|
    vector<Size> bl_per_imgs(num_images);
 | 
						|
    vector<Point> block_corners;
 | 
						|
    vector<Mat> block_images;
 | 
						|
    vector<pair<Mat,uchar> > block_masks;
 | 
						|
 | 
						|
    // Construct blocks for gain compensator
 | 
						|
    for (int img_idx = 0; img_idx < num_images; ++img_idx)
 | 
						|
    {
 | 
						|
        Size bl_per_img((images[img_idx].cols + bl_width_ - 1) / bl_width_,
 | 
						|
                        (images[img_idx].rows + bl_height_ - 1) / bl_height_);
 | 
						|
        int bl_width = (images[img_idx].cols + bl_per_img.width - 1) / bl_per_img.width;
 | 
						|
        int bl_height = (images[img_idx].rows + bl_per_img.height - 1) / bl_per_img.height;
 | 
						|
        bl_per_imgs[img_idx] = bl_per_img;
 | 
						|
        for (int by = 0; by < bl_per_img.height; ++by)
 | 
						|
        {
 | 
						|
            for (int bx = 0; bx < bl_per_img.width; ++bx)
 | 
						|
            {
 | 
						|
                Point bl_tl(bx * bl_width, by * bl_height);
 | 
						|
                Point bl_br(min(bl_tl.x + bl_width, images[img_idx].cols),
 | 
						|
                            min(bl_tl.y + bl_height, images[img_idx].rows));
 | 
						|
 | 
						|
                block_corners.push_back(corners[img_idx] + bl_tl);
 | 
						|
                block_images.push_back(images[img_idx](Rect(bl_tl, bl_br)));
 | 
						|
                block_masks.push_back(make_pair(masks[img_idx].first(Rect(bl_tl, bl_br)), 
 | 
						|
                                                masks[img_idx].second));
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    GainCompensator compensator;
 | 
						|
    compensator.feed(block_corners, block_images, block_masks);
 | 
						|
    vector<double> gains = compensator.gains();
 | 
						|
    gain_maps_.resize(num_images);
 | 
						|
 | 
						|
    Mat_<float> ker(1, 3); 
 | 
						|
    ker(0,0) = 0.25; ker(0,1) = 0.5; ker(0,2) = 0.25;
 | 
						|
 | 
						|
    int bl_idx = 0;
 | 
						|
    for (int img_idx = 0; img_idx < num_images; ++img_idx)
 | 
						|
    {
 | 
						|
        Size bl_per_img = bl_per_imgs[img_idx];
 | 
						|
        gain_maps_[img_idx].create(bl_per_img);
 | 
						|
 | 
						|
        for (int by = 0; by < bl_per_img.height; ++by)
 | 
						|
            for (int bx = 0; bx < bl_per_img.width; ++bx, ++bl_idx)
 | 
						|
                gain_maps_[img_idx](by, bx) = static_cast<float>(gains[bl_idx]);
 | 
						|
        
 | 
						|
        sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
 | 
						|
        sepFilter2D(gain_maps_[img_idx], gain_maps_[img_idx], CV_32F, ker, ker);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BlocksGainCompensator::apply(int index, Point /*corner*/, Mat &image, const Mat &/*mask*/)
 | 
						|
{
 | 
						|
    CV_Assert(image.type() == CV_8UC3);
 | 
						|
 | 
						|
    Mat_<float> gain_map;
 | 
						|
    if (gain_maps_[index].size() == image.size())
 | 
						|
        gain_map = gain_maps_[index];
 | 
						|
    else
 | 
						|
        resize(gain_maps_[index], gain_map, image.size(), 0, 0, INTER_LINEAR);
 | 
						|
 | 
						|
    for (int y = 0; y < image.rows; ++y)
 | 
						|
    {
 | 
						|
        const float* gain_row = gain_map.ptr<float>(y);
 | 
						|
        Point3_<uchar>* row = image.ptr<Point3_<uchar> >(y);
 | 
						|
        for (int x = 0; x < image.cols; ++x)
 | 
						|
        {
 | 
						|
            row[x].x = saturate_cast<uchar>(row[x].x * gain_row[x]);
 | 
						|
            row[x].y = saturate_cast<uchar>(row[x].y * gain_row[x]);
 | 
						|
            row[x].z = saturate_cast<uchar>(row[x].z * gain_row[x]);
 | 
						|
        }
 | 
						|
    }
 | 
						|
} |