377 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			377 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*M///////////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
 | |
| //
 | |
| //  By downloading, copying, installing or using the software you agree to this license.
 | |
| //  If you do not agree to this license, do not download, install,
 | |
| //  copy or use the software.
 | |
| //
 | |
| //
 | |
| //                        Intel License Agreement
 | |
| //
 | |
| // Copyright (C) 2000, Intel Corporation, all rights reserved.
 | |
| // Third party copyrights are property of their respective owners.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without modification,
 | |
| // are permitted provided that the following conditions are met:
 | |
| //
 | |
| //   * Redistribution's of source code must retain the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer.
 | |
| //
 | |
| //   * Redistribution's in binary form must reproduce the above copyright notice,
 | |
| //     this list of conditions and the following disclaimer in the documentation
 | |
| //     and/or other materials provided with the distribution.
 | |
| //
 | |
| //   * The name of Intel Corporation may not be used to endorse or promote products
 | |
| //     derived from this software without specific prior written permission.
 | |
| //
 | |
| // This software is provided by the copyright holders and contributors "as is" and
 | |
| // any express or implied warranties, including, but not limited to, the implied
 | |
| // warranties of merchantability and fitness for a particular purpose are disclaimed.
 | |
| // In no event shall the Intel Corporation or contributors be liable for any direct,
 | |
| // indirect, incidental, special, exemplary, or consequential damages
 | |
| // (including, but not limited to, procurement of substitute goods or services;
 | |
| // loss of use, data, or profits; or business interruption) however caused
 | |
| // and on any theory of liability, whether in contract, strict liability,
 | |
| // or tort (including negligence or otherwise) arising in any way out of
 | |
| // the use of this software, even if advised of the possibility of such damage.
 | |
| //
 | |
| //M*/
 | |
| 
 | |
| #ifndef __OPENCV_PRECOMP_H__
 | |
| #define __OPENCV_PRECOMP_H__
 | |
| 
 | |
| #include "opencv2/core.hpp"
 | |
| #include "old_ml.hpp"
 | |
| #include "opencv2/core/core_c.h"
 | |
| #include "opencv2/core/utility.hpp"
 | |
| 
 | |
| #include "opencv2/core/private.hpp"
 | |
| 
 | |
| #include <assert.h>
 | |
| #include <float.h>
 | |
| #include <limits.h>
 | |
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| #include <time.h>
 | |
| 
 | |
| #define ML_IMPL CV_IMPL
 | |
| #define __BEGIN__ __CV_BEGIN__
 | |
| #define __END__ __CV_END__
 | |
| #define EXIT __CV_EXIT__
 | |
| 
 | |
| #define CV_MAT_ELEM_FLAG( mat, type, comp, vect, tflag )    \
 | |
|     (( tflag == CV_ROW_SAMPLE )                             \
 | |
|     ? (CV_MAT_ELEM( mat, type, comp, vect ))                \
 | |
|     : (CV_MAT_ELEM( mat, type, vect, comp )))
 | |
| 
 | |
| /* Convert matrix to vector */
 | |
| #define ICV_MAT2VEC( mat, vdata, vstep, num )      \
 | |
|     if( MIN( (mat).rows, (mat).cols ) != 1 )       \
 | |
|         CV_ERROR( CV_StsBadArg, "" );              \
 | |
|     (vdata) = ((mat).data.ptr);                    \
 | |
|     if( (mat).rows == 1 )                          \
 | |
|     {                                              \
 | |
|         (vstep) = CV_ELEM_SIZE( (mat).type );      \
 | |
|         (num) = (mat).cols;                        \
 | |
|     }                                              \
 | |
|     else                                           \
 | |
|     {                                              \
 | |
|         (vstep) = (mat).step;                      \
 | |
|         (num) = (mat).rows;                        \
 | |
|     }
 | |
| 
 | |
| /* get raw data */
 | |
| #define ICV_RAWDATA( mat, flags, rdata, sstep, cstep, m, n )         \
 | |
|     (rdata) = (mat).data.ptr;                                        \
 | |
|     if( CV_IS_ROW_SAMPLE( flags ) )                                  \
 | |
|     {                                                                \
 | |
|         (sstep) = (mat).step;                                        \
 | |
|         (cstep) = CV_ELEM_SIZE( (mat).type );                        \
 | |
|         (m) = (mat).rows;                                            \
 | |
|         (n) = (mat).cols;                                            \
 | |
|     }                                                                \
 | |
|     else                                                             \
 | |
|     {                                                                \
 | |
|         (cstep) = (mat).step;                                        \
 | |
|         (sstep) = CV_ELEM_SIZE( (mat).type );                        \
 | |
|         (n) = (mat).rows;                                            \
 | |
|         (m) = (mat).cols;                                            \
 | |
|     }
 | |
| 
 | |
| #define ICV_IS_MAT_OF_TYPE( mat, mat_type) \
 | |
|     (CV_IS_MAT( mat ) && CV_MAT_TYPE( mat->type ) == (mat_type) &&   \
 | |
|     (mat)->cols > 0 && (mat)->rows > 0)
 | |
| 
 | |
| /*
 | |
|     uchar* data; int sstep, cstep;      - trainData->data
 | |
|     uchar* classes; int clstep; int ncl;- trainClasses
 | |
|     uchar* tmask; int tmstep; int ntm;  - typeMask
 | |
|     uchar* missed;int msstep, mcstep;   -missedMeasurements...
 | |
|     int mm, mn;                         == m,n == size,dim
 | |
|     uchar* sidx;int sistep;             - sampleIdx
 | |
|     uchar* cidx;int cistep;             - compIdx
 | |
|     int k, l;                           == n,m == dim,size (length of cidx, sidx)
 | |
|     int m, n;                           == size,dim
 | |
| */
 | |
| #define ICV_DECLARE_TRAIN_ARGS()                                                    \
 | |
|     uchar* data;                                                                    \
 | |
|     int sstep, cstep;                                                               \
 | |
|     uchar* classes;                                                                 \
 | |
|     int clstep;                                                                     \
 | |
|     int ncl;                                                                        \
 | |
|     uchar* tmask;                                                                   \
 | |
|     int tmstep;                                                                     \
 | |
|     int ntm;                                                                        \
 | |
|     uchar* missed;                                                                  \
 | |
|     int msstep, mcstep;                                                             \
 | |
|     int mm, mn;                                                                     \
 | |
|     uchar* sidx;                                                                    \
 | |
|     int sistep;                                                                     \
 | |
|     uchar* cidx;                                                                    \
 | |
|     int cistep;                                                                     \
 | |
|     int k, l;                                                                       \
 | |
|     int m, n;                                                                       \
 | |
|                                                                                     \
 | |
|     data = classes = tmask = missed = sidx = cidx = NULL;                           \
 | |
|     sstep = cstep = clstep = ncl = tmstep = ntm = msstep = mcstep = mm = mn = 0;    \
 | |
|     sistep = cistep = k = l = m = n = 0;
 | |
| 
 | |
| #define ICV_TRAIN_DATA_REQUIRED( param, flags )                                     \
 | |
|     if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) )                                  \
 | |
|     {                                                                               \
 | |
|         CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );                   \
 | |
|     }                                                                               \
 | |
|     else                                                                            \
 | |
|     {                                                                               \
 | |
|         ICV_RAWDATA( *(param), (flags), data, sstep, cstep, m, n );                 \
 | |
|         k = n;                                                                      \
 | |
|         l = m;                                                                      \
 | |
|     }
 | |
| 
 | |
| #define ICV_TRAIN_CLASSES_REQUIRED( param )                                         \
 | |
|     if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) )                                  \
 | |
|     {                                                                               \
 | |
|         CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );                   \
 | |
|     }                                                                               \
 | |
|     else                                                                            \
 | |
|     {                                                                               \
 | |
|         ICV_MAT2VEC( *(param), classes, clstep, ncl );                              \
 | |
|         if( m != ncl )                                                              \
 | |
|         {                                                                           \
 | |
|             CV_ERROR( CV_StsBadArg, "Unmatched sizes" );                            \
 | |
|         }                                                                           \
 | |
|     }
 | |
| 
 | |
| #define ICV_ARG_NULL( param )                                                       \
 | |
|     if( (param) != NULL )                                                           \
 | |
|     {                                                                               \
 | |
|         CV_ERROR( CV_StsBadArg, #param " parameter must be NULL" );                 \
 | |
|     }
 | |
| 
 | |
| #define ICV_MISSED_MEASUREMENTS_OPTIONAL( param, flags )                            \
 | |
|     if( param )                                                                     \
 | |
|     {                                                                               \
 | |
|         if( !ICV_IS_MAT_OF_TYPE( param, CV_8UC1 ) )                                 \
 | |
|         {                                                                           \
 | |
|             CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );               \
 | |
|         }                                                                           \
 | |
|         else                                                                        \
 | |
|         {                                                                           \
 | |
|             ICV_RAWDATA( *(param), (flags), missed, msstep, mcstep, mm, mn );       \
 | |
|             if( mm != m || mn != n )                                                \
 | |
|             {                                                                       \
 | |
|                 CV_ERROR( CV_StsBadArg, "Unmatched sizes" );                        \
 | |
|             }                                                                       \
 | |
|         }                                                                           \
 | |
|     }
 | |
| 
 | |
| #define ICV_COMP_IDX_OPTIONAL( param )                                              \
 | |
|     if( param )                                                                     \
 | |
|     {                                                                               \
 | |
|         if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) )                                \
 | |
|         {                                                                           \
 | |
|             CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );               \
 | |
|         }                                                                           \
 | |
|         else                                                                        \
 | |
|         {                                                                           \
 | |
|             ICV_MAT2VEC( *(param), cidx, cistep, k );                               \
 | |
|             if( k > n )                                                             \
 | |
|                 CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );           \
 | |
|         }                                                                           \
 | |
|     }
 | |
| 
 | |
| #define ICV_SAMPLE_IDX_OPTIONAL( param )                                            \
 | |
|     if( param )                                                                     \
 | |
|     {                                                                               \
 | |
|         if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) )                                \
 | |
|         {                                                                           \
 | |
|             CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );               \
 | |
|         }                                                                           \
 | |
|         else                                                                        \
 | |
|         {                                                                           \
 | |
|             ICV_MAT2VEC( *sampleIdx, sidx, sistep, l );                             \
 | |
|             if( l > m )                                                             \
 | |
|                 CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" );           \
 | |
|         }                                                                           \
 | |
|     }
 | |
| 
 | |
| /****************************************************************************************/
 | |
| #define ICV_CONVERT_FLOAT_ARRAY_TO_MATRICE( array, matrice )        \
 | |
| {                                                                   \
 | |
|     CvMat a, b;                                                     \
 | |
|     int dims = (matrice)->cols;                                     \
 | |
|     int nsamples = (matrice)->rows;                                 \
 | |
|     int type = CV_MAT_TYPE((matrice)->type);                        \
 | |
|     int i, offset = dims;                                           \
 | |
|                                                                     \
 | |
|     CV_ASSERT( type == CV_32FC1 || type == CV_64FC1 );              \
 | |
|     offset *= ((type == CV_32FC1) ? sizeof(float) : sizeof(double));\
 | |
|                                                                     \
 | |
|     b = cvMat( 1, dims, CV_32FC1 );                                 \
 | |
|     cvGetRow( matrice, &a, 0 );                                     \
 | |
|     for( i = 0; i < nsamples; i++, a.data.ptr += offset )           \
 | |
|     {                                                               \
 | |
|         b.data.fl = (float*)array[i];                               \
 | |
|         CV_CALL( cvConvert( &b, &a ) );                             \
 | |
|     }                                                               \
 | |
| }
 | |
| 
 | |
| /****************************************************************************************\
 | |
| *                       Auxiliary functions declarations                                 *
 | |
| \****************************************************************************************/
 | |
| 
 | |
| /* Generates a set of classes centers in quantity <num_of_clusters> that are generated as
 | |
|    uniform random vectors in parallelepiped, where <data> is concentrated. Vectors in
 | |
|    <data> should have horizontal orientation. If <centers> != NULL, the function doesn't
 | |
|    allocate any memory and stores generated centers in <centers>, returns <centers>.
 | |
|    If <centers> == NULL, the function allocates memory and creates the matrice. Centers
 | |
|    are supposed to be oriented horizontally. */
 | |
| CvMat* icvGenerateRandomClusterCenters( int seed,
 | |
|                                         const CvMat* data,
 | |
|                                         int num_of_clusters,
 | |
|                                         CvMat* centers CV_DEFAULT(0));
 | |
| 
 | |
| /* Fills the <labels> using <probs> by choosing the maximal probability. Outliers are
 | |
|    fixed by <oulier_tresh> and have cluster label (-1). Function also controls that there
 | |
|    weren't "empty" clusters by filling empty clusters with the maximal probability vector.
 | |
|    If probs_sums != NULL, filles it with the sums of probabilities for each sample (it is
 | |
|    useful for normalizing probabilities' matrice of FCM) */
 | |
| void icvFindClusterLabels( const CvMat* probs, float outlier_thresh, float r,
 | |
|                            const CvMat* labels );
 | |
| 
 | |
| typedef struct CvSparseVecElem32f
 | |
| {
 | |
|     int idx;
 | |
|     float val;
 | |
| }
 | |
| CvSparseVecElem32f;
 | |
| 
 | |
| /* Prepare training data and related parameters */
 | |
| #define CV_TRAIN_STATMODEL_DEFRAGMENT_TRAIN_DATA    1
 | |
| #define CV_TRAIN_STATMODEL_SAMPLES_AS_ROWS          2
 | |
| #define CV_TRAIN_STATMODEL_SAMPLES_AS_COLUMNS       4
 | |
| #define CV_TRAIN_STATMODEL_CATEGORICAL_RESPONSE     8
 | |
| #define CV_TRAIN_STATMODEL_ORDERED_RESPONSE         16
 | |
| #define CV_TRAIN_STATMODEL_RESPONSES_ON_OUTPUT      32
 | |
| #define CV_TRAIN_STATMODEL_ALWAYS_COPY_TRAIN_DATA   64
 | |
| #define CV_TRAIN_STATMODEL_SPARSE_AS_SPARSE         128
 | |
| 
 | |
| int
 | |
| cvPrepareTrainData( const char* /*funcname*/,
 | |
|                     const CvMat* train_data, int tflag,
 | |
|                     const CvMat* responses, int response_type,
 | |
|                     const CvMat* var_idx,
 | |
|                     const CvMat* sample_idx,
 | |
|                     bool always_copy_data,
 | |
|                     const float*** out_train_samples,
 | |
|                     int* _sample_count,
 | |
|                     int* _var_count,
 | |
|                     int* _var_all,
 | |
|                     CvMat** out_responses,
 | |
|                     CvMat** out_response_map,
 | |
|                     CvMat** out_var_idx,
 | |
|                     CvMat** out_sample_idx=0 );
 | |
| 
 | |
| void
 | |
| cvSortSamplesByClasses( const float** samples, const CvMat* classes,
 | |
|                         int* class_ranges, const uchar** mask CV_DEFAULT(0) );
 | |
| 
 | |
| void
 | |
| cvCombineResponseMaps (CvMat*  _responses,
 | |
|                  const CvMat*  old_response_map,
 | |
|                        CvMat*  new_response_map,
 | |
|                        CvMat** out_response_map);
 | |
| 
 | |
| void
 | |
| cvPreparePredictData( const CvArr* sample, int dims_all, const CvMat* comp_idx,
 | |
|                       int class_count, const CvMat* prob, float** row_sample,
 | |
|                       int as_sparse CV_DEFAULT(0) );
 | |
| 
 | |
| /* copies clustering [or batch "predict"] results
 | |
|    (labels and/or centers and/or probs) back to the output arrays */
 | |
| void
 | |
| cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
 | |
|                    const CvMat* centers, CvMat* dst_centers,
 | |
|                    const CvMat* probs, CvMat* dst_probs,
 | |
|                    const CvMat* sample_idx, int samples_all,
 | |
|                    const CvMat* comp_idx, int dims_all );
 | |
| #define cvWritebackResponses cvWritebackLabels
 | |
| 
 | |
| #define XML_FIELD_NAME "_name"
 | |
| CvFileNode* icvFileNodeGetChild(CvFileNode* father, const char* name);
 | |
| CvFileNode* icvFileNodeGetChildArrayElem(CvFileNode* father, const char* name,int index);
 | |
| CvFileNode* icvFileNodeGetNext(CvFileNode* n, const char* name);
 | |
| 
 | |
| 
 | |
| void cvCheckTrainData( const CvMat* train_data, int tflag,
 | |
|                        const CvMat* missing_mask,
 | |
|                        int* var_all, int* sample_all );
 | |
| 
 | |
| CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_duplicates=false );
 | |
| 
 | |
| CvMat* cvPreprocessVarType( const CvMat* type_mask, const CvMat* var_idx,
 | |
|                             int var_all, int* response_type );
 | |
| 
 | |
| CvMat* cvPreprocessOrderedResponses( const CvMat* responses,
 | |
|                 const CvMat* sample_idx, int sample_all );
 | |
| 
 | |
| CvMat* cvPreprocessCategoricalResponses( const CvMat* responses,
 | |
|                 const CvMat* sample_idx, int sample_all,
 | |
|                 CvMat** out_response_map, CvMat** class_counts=0 );
 | |
| 
 | |
| const float** cvGetTrainSamples( const CvMat* train_data, int tflag,
 | |
|                    const CvMat* var_idx, const CvMat* sample_idx,
 | |
|                    int* _var_count, int* _sample_count,
 | |
|                    bool always_copy_data=false );
 | |
| 
 | |
| namespace cv
 | |
| {
 | |
|     struct DTreeBestSplitFinder
 | |
|     {
 | |
|         DTreeBestSplitFinder(){ splitSize = 0, tree = 0; node = 0; }
 | |
|         DTreeBestSplitFinder( CvDTree* _tree, CvDTreeNode* _node);
 | |
|         DTreeBestSplitFinder( const DTreeBestSplitFinder& finder, Split );
 | |
|         virtual ~DTreeBestSplitFinder() {}
 | |
|         virtual void operator()(const BlockedRange& range);
 | |
|         void join( DTreeBestSplitFinder& rhs );
 | |
|         Ptr<CvDTreeSplit> bestSplit;
 | |
|         Ptr<CvDTreeSplit> split;
 | |
|         int splitSize;
 | |
|         CvDTree* tree;
 | |
|         CvDTreeNode* node;
 | |
|     };
 | |
| 
 | |
|     struct ForestTreeBestSplitFinder : DTreeBestSplitFinder
 | |
|     {
 | |
|         ForestTreeBestSplitFinder() : DTreeBestSplitFinder() {}
 | |
|         ForestTreeBestSplitFinder( CvForestTree* _tree, CvDTreeNode* _node );
 | |
|         ForestTreeBestSplitFinder( const ForestTreeBestSplitFinder& finder, Split );
 | |
|         virtual void operator()(const BlockedRange& range);
 | |
|     };
 | |
| }
 | |
| 
 | |
| #endif /* __ML_H__ */
 | 
